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1  | INTRODUC TION

The analysis of parentage is a key facet of molecular ecology. Since 
the realization in the 1970s and 1980s that genetic data could po‐
tentially diagnose parent–offspring relationships in nature (Ellstrand, 
1984; Gowaty & Karlin, 1984; Thompson, 1976a, 1976b), parentage 
analysis has blossomed into an active enterprise spanning numerous 

fields of inquiry. In the realm of molecular ecology, an understand‐
ing of parentage patterns can provide indispensable information for 
the study of sexual selection (Coltman, Festa‐Bianchet, Jorgenson, 
& Strobeck, 2002; Jones, 2009), conservation biology (Haig, 1998; 
Planes, Jones, & Thorrold, 2009), effective population size (Araki, 
Waples, Ardren, Cooper, & Blouin, 2007) and even speciation 
and natural selection (Conner, Rush, Kercher, & Jennetten, 1996; 
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Abstract
Parentage analysis is a cornerstone of molecular ecology that has delivered funda‐
mental insights into behaviour, ecology and evolution. Microsatellite markers have 
long been the king of parentage, their hypervariable nature conferring sufficient 
power to correctly assign offspring to parents. However, microsatellite markers have 
seen a sharp decline in use with the rise of next‐generation sequencing technologies, 
especially in the study of population genetics and local adaptation. The time is ripe to 
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by the emergence of next‐generation sequencing approaches. We find that single 
nucleotide polymorphisms (SNPs), the typical next-generation sequencing marker, 
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based parentage analyses published thus far. Many of these papers, particularly the 
earlier ones, compare the power of SNPs and microsatellites in a parentage context. 
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next‐generation sequencing data for parentage analysis and conclude that the future 
is bright for this important realm of molecular ecology.
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Muhlfield et al., 2009). From its humble beginnings and slow start 
during the rise of allozyme markers, parentage analysis has matured 
into a sophisticated discipline that continues to evolve as new tech‐
nology becomes available.

The fundamental idea underlying parentage analysis is actually 
quite simple. Given Mendel's laws, we know that each individual in‐
herits genetic material from its parents. For diploids, each progeny 
receives precisely one allele from its mother and one from its father 
at each locus. Thus, a suite of Mendelian loci, genotyped in a sample 
of individuals, can distinguish parent–offspring relationships from 
other sorts of relationships, including unrelated pairs (Thompson, 
1975; Thompson & Meagher, 1987). This analysis requires that the 
marker loci be polymorphic (i.e., have two or more alleles per locus) 
and that the nature of inheritance at the loci is understood. Even 
though the application of parentage analysis often includes complex 
equations and arcane implementations, the simple fact of Mendelian 
inheritance always lies at its core.

The most important recent development in parentage analysis 
is the introduction of next‐generation sequencing approaches. The 
concomitant potential to genotype thousands or even millions of 
loci in almost any species has the potential to dramatically trans‐
form parentage analysis (Glaubitz, Rhodes, & DeWoody, 2003). The 
availability of such large genetic data sets makes the choice of ge‐
notyping marker more difficult than when a single marker type was 
clearly best, as many factors must now be weighed before embark‐
ing on a parentage study. Here, we review the current state of par‐
entage analysis, with the goal of providing guidelines and important 
considerations for studies that require parentage analysis. We start 
with a short history of parentage analysis and a review of the cur‐
rent state of the field. We then discuss the molecular and statistical 
approaches currently in use. We follow those sections with a discus‐
sion of the potential pitfalls in parentage analysis and how to avoid 
them. We conclude with some recommendations regarding how re‐
searchers can easily transition into the next‐generation sequencing 
era of parentage analysis.

2  | A BRIEF HISTORY OF PARENTAGE 
ANALYSIS

One of the remarkable features of evolutionary biology in the 
20th century is that much of the theory needed to analyse popu‐
lation‐level patterns with genetic data had been developed well 
before appropriate markers became available. This statement 
is especially germane for parentage analysis. The most impor‐
tant ideas underlying this area of inquiry were developed in the 
1970s and 1980s (Meagher & Thompson, 1986; Thompson, 1975, 
1976a, 1976b). At the time, the only readily available molecu‐
lar markers were allozymes (also called isozymes), an ingenious 
method that launched evolutionary biology into the molecular 
marker era (Hubby & Lewontin, 1966; Lewontin & Hubby, 1966). 
The allozyme approach involved electrophoresis of proteins 
through a matrix, followed by visualization of the protein using 

stains that took advantage of the enzymatic properties of spe‐
cific proteins to produce a visible smudge on a gel. Different al‐
leles at a protein could differ with respect to size or net charge, 
both of which would affect the mobility of the protein, resulting 
in distinguishable allelic variation. In principle, allozymes, as the 
first easy‐to‐assay, codominant, Mendelian marker, were perfect 
for parentage analysis. In practice, however, they almost never 
harboured enough variation to diagnose parent–offspring rela‐
tionships reliably.

Nevertheless, the advent of allozymes catalysed the devel‐
opment of a robust body of theory related to parentage analysis. 
The most important realization was that the genotypes of pairs 
or triads of individuals could be used to develop a rigorous hy‐
pothesis‐testing approach based on maximum‐likelihood equa‐
tions (Meagher & Thompson, 1986). Around the same time, a 
method of fractional parentage allocation was developed, which 
retained the inevitable uncertainty in parentage assignments 
during downstream analysis (Devlin, Roeder, & Ellstrand, 1988). 
Thus, by the end of the 1980s, just as the first wave of hyper‐
variable Mendelian markers began to spread through the field 
(Tautz, 1989), researchers already had access to a fairly robust 
analytical toolkit, which included strict exclusion, categorical al‐
location, and fractional allocation, with the latter two methods 
taking advantage of formal maximum‐likelihood approaches. 
Despite the growing toolkit, parentage analysis in the allozyme 
days was nearly impossible given the low information content of 
the markers, and the few successful examples could be counted 
using the fingers on one hand (Ellstrand, 1984; Gowaty & Karlin, 
1984; Hanken & Sherman, 1981; Meagher, 1986).

2.1 | The modern era of parentage analysis

We entered the modern era of parentage analysis in the 1990s, 
when this area of inquiry, along with everything else in molecular 
ecology, was swept forward on the wave of the microsatellite rev‐
olution (Jarne & Lagoda, 1996; Powell, Machray, & Provan, 1996; 
Queller, Strassman, & Hughes, 1993; Tautz, 1989). Before micros‐
atellites, multilocus DNA fingerprinting was explored as a way to 
diagnose extra‐pair paternity, especially in birds (Birkhead, Burke, 
Zann, Hunter, & Krupa, 1990; Burke, Davies, Bruford, & Hatchwell, 
1989), but DNA fingerprinting was crude in the sense that it relied 
on patterns of band sharing, and this feature prevented it from 
interfacing with theory developed for Mendelian markers. The 
fact that microsatellite markers were Mendelian (unlike multilocus 
DNA fingerprinting) and had multitudes of alleles per locus (unlike 
allozymes) allowed empiricism to finally catch up with the theory, 
and parentage studies in natural populations began to appear by 
the dozens (Brockmann, Colson, & Potts, 1994; Dow & Ashley, 
1996; Jones & Avise, 1997a, 1997b; Kellogg, Markert, Stauffer, 
& Kocher, 1995; Morin, Wallis, Moore, & Woodruff, 1994). 
Researchers took a second look at the theory and developed 
methods that accommodated the specific strengths and weak‐
nesses of microsatellites (Marshall, Slate, Kruuk, & Pemberton, 



546  |     FLANAGAN ANd JONES

TA
B

LE
 1

 
St

ud
ie

s 
of

 p
ar

en
ta

ge
 u

si
ng

 “c
la

ss
ic

al
” S

N
Ps

—
in

cl
ud

in
g 

Ill
um

in
a 

SN
P-

C
hi

ps

Re
fe

re
nc

e
O

rg
an

is
m

N
um

be
r o

f 
m

ic
ro

sa
te

lli
te

s
SN

P 
m

et
ho

d,
 

nu
m

be
r o

f S
N

Ps
Pa

re
nt

ag
e 

an
al

ys
is

 
so

ft
w

ar
e

Pa
re

nt
ag

e 
re

le
va

nc
e 

an
d 

co
nc

lu
si

on
s

A
ba

dí
a‐

C
ar

do
so

 e
t a

l. 
(2

01
3)

St
ee

lh
ea

d 
(fi

sh
)

0
SN

P-
PC

R,
 9

5
sn

pp
it

Re
co

ns
tr

uc
tio

n 
of

 p
ed

ig
re

es
 v

ia
 p

ar
en

ta
ge

 a
na

ly
si

s 
pr

ov
id

ed
 in

si
gh

ts
 in

to
 a

sp
ec

ts
 o

f l
ife

 
hi

st
or

y 
an

d 
he

rit
ab

ili
ty

. A
 p

an
el

 o
f 9

5 
SN

Ps
 re

so
lv

ed
 p

ar
en

ta
ge

 in
 th

is
 v

er
y 

la
rg

e 
st

ud
y 

(N
 =

 4
,8

95
 s

am
pl

es
).

Be
ll,

 H
en

sh
al

l, 
G

ill
, 

G
or

e,
 a

nd
 K

ija
s 

(2
01

3)
Sh

ee
p 

(m
am

m
al

)
0

SN
P-

PC
R,

 3
83

C
us

to
m

 m
ax

im
um

‐
lik

el
ih

oo
d 

ap
pr

oa
ch

Te
st

ed
 S

N
P 

pa
ne

ls
 fo

r p
ar

en
ta

ge
 a

na
ly

si
s 

in
 d

om
es

tic
 s

he
ep

. A
s 

fe
w

 a
s 

12
7 

SN
Ps

 re
so

lv
ed

 
pa

re
nt

ag
e 

w
el

l.

Be
ac

ha
m

 e
t a

l. 
(2

01
7)

C
oh

o 
sa

lm
on

 
(fi

sh
)

0
SN

P-
PC

R,
 3

04
sn

pp
it

, c
o

lo
n

y 
2.

0.
6.

2
Te

st
ed

 d
ire

ct
 s

eq
ue

nc
in

g 
of

 S
N

Ps
 lo

ca
te

d 
in

 a
m

pl
ic

on
s 

fo
r p

ar
en

ta
ge

-b
as

ed
 ta

gg
in

g 
an

d 
ge

ne
tic

 s
to

ck
 id

en
tif

ic
at

io
n.

 W
ith

 th
e 

30
4 

SN
Ps

, 9
2%

 o
f i

nd
iv

id
ua

ls
 o

f k
no

w
n 

ag
e 

an
d 

or
ig

in
 

w
er

e 
as

si
gn

ed
 to

 p
ar

en
ts

 w
ith

 1
00

%
 a

cc
ur

ac
y 

us
in

g 
SN

PP
IT

 a
nd

 9
9.

9%
 o

f i
nd

iv
id

ua
ls

 w
er

e 
as

si
gn

ed
 w

ith
 9

9.
9%

 a
cc

ur
ac

y 
vi

a 
CO

LO
N

Y.

Be
ac

ha
m

, W
al

la
ce

, 
Jo

ns
en

 e
t a

l. 
(2

01
8)

C
oh

o 
sa

lm
on

 
(fi

sh
)

0
SN

P-
PC

R,
 3

04
co

lo
n

y 
2.

0.
6.

2
C

om
pa

re
d 

pa
re

nt
ag

e‐
ba

se
d 

ta
gg

in
g 

an
d 

ge
ne

tic
 s

to
ck

 id
en

tif
ic

at
io

n 
w

ith
 c

od
ed

 w
ire

 ta
gs

 to
 

id
en

tif
y 

C
oh

o 
sa

lm
on

 s
am

pl
ed

 in
 fi

sh
er

ie
s 

an
d 

es
ca

pe
m

en
ts

. F
ou

nd
 1

00
%

 p
op

ul
at

io
n 

as
si

gn
m

en
t a

cc
ur

ac
y 

us
in

g 
pa

re
nt

ag
e-

ba
se

d 
ta

gg
in

g,
 w

ith
 a

 to
ta

l o
f 9

4.
8%

 o
f k

no
w

n-
or

ig
in

 
in

di
vi

du
al

s 
as

si
gn

ed
. F

ou
nd

 th
at

 th
e 

pa
re

nt
ag

e‐
ba

se
d 

ta
gg

in
g 

sy
st

em
 is

 le
ss

 e
xp

en
si

ve
 th

an
 

th
e 

co
de

d 
w

ire
 ta

gg
in

g 
sy

st
em

 a
nd

 p
er

fo
rm

s 
at

 le
as

t a
s 

w
el

l, 
if 

no
t b

et
te

r, 
th

an
 c

od
ed

 w
ire

 
ta

gs
 in

 a
ss

ig
ni

ng
 in

di
vi

du
al

s 
to

 p
op

ul
at

io
ns

 o
f o

rig
in

.

Be
ac

ha
m

, W
al

la
ce

, 
M

ac
C

on
na

ch
ie

 e
t a

l. 
(2

01
8)

C
hi

no
ok

 
sa

lm
on

 
(fi

sh
)

0
SN

P-
PC

R,
 3

21
sn

pp
it

, c
o

lo
n

y 
2.

0.
6.

2
Te

st
ed

 th
e 

ab
ili

ty
 to

 d
ire

ct
ly

 s
eq

ue
nc

e 
SN

Ps
 in

 a
m

pl
ic

on
s 

fo
r p

ar
en

ta
ge

-b
as

ed
 ta

gg
in

g 
an

d 
ge

ne
tic

 s
to

ck
 id

en
tif

ic
at

io
n 

in
 C

hi
no

ok
 s

al
m

on
. 8

2%
 o

f 6
56

 o
ne

-y
ea

r-
ol

d 
in

di
vi

du
al

s 
of

 
kn

ow
n 

or
ig

in
 w

er
e 

as
si

gn
ed

 w
ith

 1
00

%
 a

cc
ur

ac
y 

to
 th

ei
r s

ou
rc

e 
po

pu
la

tio
n 

us
in

g 
SN

PP
IT

. 
CO

LO
N

Y 
as

si
gn

ed
 9

6.
9%

 o
f k

no
w

n-
or

ig
in

 in
di

vi
du

al
s 

to
 th

e 
co

rr
ec

t p
op

ul
at

io
n 

w
ith

 9
9.

8%
 

ac
cu

ra
cy

.

Bu
ch

an
an

 e
t a

l. 
(2

01
7)

Be
ef

 c
at

tle
 

(m
am

m
al

)
14

SN
P-

PC
R,

 1
09

; 
SN

P-
C

hi
p,

 
1,

00
0

C
us

to
m

 e
xc

lu
si

on
 

ap
pr

oa
ch

Th
is

 c
om

pa
ris

on
 o

f m
ic

ro
sa

te
lli

te
s 

an
d 

SN
Ps

 fo
un

d 
bo

th
 to

 re
so

lv
e 

pa
re

nt
ag

e 
ac

cu
ra

te
ly

.

C
la

rk
e 

et
 a

l. 
(2

01
4)

Sh
ee

p 
(m

am
m

al
)

11
SN

P-
PC

R,
 8

4
c

er
v

u
s 3

.0
.3

, c
us

to
m

 
m

ax
im

um
‐li

ke
lih

oo
d

Ex
pl

or
ed

 th
e 

ut
ili

ty
 o

f S
N

Ps
 fo

r p
ar

en
ta

ge
 a

na
ly

si
s 

in
 s

he
ep

. T
he

 S
N

Ps
 re

so
lv

ed
 p

ar
en

ta
ge

 
al

m
os

t p
er

fe
ct

ly
, a

 b
et

te
r r

es
ul

t t
ha

n 
th

at
 o

bt
ai

ne
d 

w
ith

 m
ic

ro
sa

te
lli

te
s.

C
ra

m
er

 e
t a

l. 
(2

01
1)

Ba
nd

ed
 

w
re

n 
(b

ird
)

7
SN

P-
PC

R,
 4

1
c

er
v

u
s 3

.0
In

 a
 s

tu
dy

 o
f e

xt
ra

-p
ai

r p
at

er
ni

ty
, 4

1 
SN

P 
lo

ci
 h

ad
 g

re
at

er
 p

ow
er

 th
an

 7
 m

ic
ro

sa
te

lli
te

s.
 T

he
 

co
m

bi
ne

d 
da

ta
 s

et
 a

ss
ig

ne
d 

al
l o

ff
sp

rin
g 

w
ith

 >
99

%
 c

on
fid

en
ce

.

D
us

sa
ul

t a
nd

 B
ou

ld
in

g 
(2

01
8)

A
tla

nt
ic

 
sa

lm
on

 
(fi

sh
)

0
SN

P-
C

hi
p,

 1
50

c
er

v
u

s 3
.0

.7
Th

is
 s

tu
dy

 in
ve

st
ig

at
ed

 h
ow

 th
e 

SN
P 

m
in

or
 a

lle
le

 fr
eq

ue
nc

y 
im

pa
ct

s 
pa

re
nt

ag
e 

as
si

gn
m

en
t. 

Re
su

lts
 s

ho
w

 th
at

 lo
ci

 w
ith

 m
in

or
 a

lle
le

 fr
eq

ue
nc

ie
s 

ne
ar

er
 to

 0
.5

 a
re

 m
or

e 
po

w
er

fu
l. 

A
 s

et
 

of
 5

0–
15

0 
SN

Ps
 w

as
 s

uf
fic

ie
nt

 to
 re

so
lv

e 
pa

re
nt

ag
e 

co
m

pl
et

el
y.

Fi
sh

er
 e

t a
l. 

(2
00

9)
D

ai
ry

 c
at

tle
 

(m
am

m
al

)
14

SN
P-

PC
R,

 7
2

C
us

to
m

 e
xc

lu
si

on
 

so
ft

w
ar

e
In

 a
 c

om
pa

ris
on

 o
f m

ar
ke

r t
yp

es
, 4

0 
or

 m
or

e 
SN

Ps
 w

er
e 

as
 e

ff
ec

tiv
e 

fo
r p

ar
en

ta
ge

 a
na

ly
si

s 
as

 
14

 m
ic

ro
sa

te
lli

te
s.

G
ar

cí
a‐

Fe
rn

án
de

z 
et

 a
l. 

(2
01

8)
G

ilt
he

ad
 

se
a 

br
ea

m
 

(fi
sh

)

9
SN

P-
PC

R,
 5

8
c

er
v

u
s 3

.0
Th

e 
58

 S
N

Ps
 w

er
e 

fr
om

 s
ev

en
 g

en
es

 a
nd

 w
er

e 
us

ed
 to

 re
so

lv
e 

ha
pl

ot
yp

es
, r

es
ul

tin
g 

in
 3

–4
1 

ha
pl

ot
yp

es
 p

er
 lo

cu
s.

 T
he

 h
ap

lo
ty

pe
s 

(w
ith

 9
9.

2%
 a

cc
ur

ac
y)

 p
er

fo
rm

ed
 b

et
te

r t
ha

n 
ei

th
er

 
ni

ne
 m

ic
ro

sa
te

lli
te

s 
(9

5.
7%

) o
r t

he
 5

8 
or

ig
in

al
 S

N
Ps

 (8
8.

7%
). 

M
ic

ro
sa

te
lli

te
 d

at
a 

ar
e 

fr
om

 
Bo

rr
el

l e
t a

l. 
(2

01
1)

.

G
ud

ex
, W

al
ke

r, 
Fi

sh
er

, 
an

d 
Sp

el
m

an
 (2

01
4)

Re
d 

de
er

 
(m

am
m

al
)

12
SN

P-
PC

R,
 1

00
C

us
to

m
 e

xc
lu

si
on

 
so

ft
w

ar
e 

fr
om

 F
is

he
r 

et
 a

l. 
(2

00
9)

In
 a

 c
om

pa
ris

on
 o

f m
ic

ro
sa

te
lli

te
s 

an
d 

SN
Ps

, 1
00

 S
N

Ps
 o

ut
pe

rf
or

m
ed

 1
2 

m
ic

ro
sa

te
lli

te
s 

fo
r 

pa
re

nt
ag

e 
ex

cl
us

io
n.

(C
on

tin
ue

d)



     |  547FLANAGAN ANd JONES

Re
fe

re
nc

e
O

rg
an

is
m

N
um

be
r o

f 
m

ic
ro

sa
te

lli
te

s
SN

P 
m

et
ho

d,
 

nu
m

be
r o

f S
N

Ps
Pa

re
nt

ag
e 

an
al

ys
is

 
so

ft
w

ar
e

Pa
re

nt
ag

e 
re

le
va

nc
e 

an
d 

co
nc

lu
si

on
s

H
ar

liz
iu

s 
et

 a
l. 

(2
01

1)
Pi

g (m
am

m
al

)
0

SN
P-

PC
R,

 1
20

c
er

v
u

s
A

 k
no

w
n 

pi
g 

pe
di

gr
ee

 w
as

 u
se

d 
to

 d
ev

el
op

 a
 p

an
el

 o
f S

N
Ps

 fo
r p

ar
en

ta
ge

 te
st

in
g.

 A
t l

ea
st

 6
0 

SN
Ps

 w
er

e 
re

qu
ire

d 
fo

r r
el

ia
bl

e 
as

si
gn

m
en

t. 
A

 tr
ou

bl
in

g 
pa

tt
er

n 
w

as
 th

at
 in

co
rr

ec
t 

as
si

gn
m

en
ts

 in
cr

ea
se

d 
w

ith
 m

or
e 

lo
ci

 w
he

n 
th

e 
tr

ue
 p

ar
en

t w
as

 n
ot

 s
am

pl
ed

.

H
au

se
r, 

Ba
ird

, H
ilb

or
n,

 
Se

eb
, a

nd
 S

ee
b 

(2
01

1)
So

ck
ey

e 
sa

lm
on

 
(fi

sh
)

11
SN

P-
PC

R,
 8

0
c

er
v

u
s 3

.0
, c

o
lo

n
y 

2.
0,

 
sn

pp
it

C
om

pa
re

d 
as

si
gn

m
en

t b
as

ed
 o

n 
m

ic
ro

sa
te

lli
te

s 
an

d 
SN

Ps
. T

he
 S

N
P 

pa
ne

l g
en

er
al

ly
 o

ut
pe

r‐
fo

rm
ed

 th
e 

m
ic

ro
sa

te
lli

te
s.

H
ea

to
n 

et
 a

l. 
(2

01
4)

Sh
ee

p 
(m

am
m

al
)

0
SN

P-
PC

R,
 1

09
M

an
ua

l E
xc

lu
si

on
A

n 
ex

am
in

at
io

n 
of

 9
5 

te
tr

ad
 fa

m
ili

es
 (o

ne
 m

ot
he

r, 
on

e 
fa

th
er

, t
w

o 
of

fs
pr

in
g)

 d
em

on
st

ra
te

d 
th

at
 1

09
 S

N
Ps

 c
an

 e
ff

ec
tiv

el
y 

re
so

lv
e 

pa
re

nt
ag

e.

H
es

s,
 A

ck
er

m
an

 e
t a

l. 
(2

01
6)

St
ee

lh
ea

d 
(fi

sh
)

0
SN

P-
PC

R,
 9

5
sn

pp
it

U
se

d 
pa

re
nt

ag
e‐

ba
se

d 
ta

gg
in

g 
to

 a
ss

ig
n 

in
di

vi
du

al
s 

to
 s

to
ck

 lo
ca

tio
ns

, w
ith

 th
e 

ul
tim

at
e 

go
al

 
of

 e
st

im
at

in
g 

va
ria

tio
n 

am
on

g 
st

oc
ks

 in
 a

bu
nd

an
ce

 a
nd

 m
ig

ra
tio

n 
tim

in
g.

H
es

s,
 H

es
s 

et
 a

l. 
(2

01
6)

St
ee

lh
ea

d 
(fi

sh
)

0
SN

P-
PC

R,
 9

5
sn

pp
it

Pa
re

nt
ag

e 
an

al
ys

is
 w

as
 u

se
d 

to
 s

ho
w

 th
at

 s
te

el
he

ad
 u

se
 th

er
m

al
 re

fu
ge

s 
to

 a
vo

id
 p

ro
lo

ng
ed

 
ex

po
su

re
 to

 h
ig

h 
w

at
er

 te
m

pe
ra

tu
re

s.

H
ol

l e
t a

l. 
(2

01
7)

D
om

es
tic

 
ho

rs
e 

(m
am

m
al

)

0
SN

P-
PC

R,
 1

01
C

us
to

m
 E

xc
lu

si
on

 
A

pp
ro

ac
h

A
 p

an
el

 o
f S

N
Ps

 w
as

 u
se

d 
to

 a
ss

es
s 

pa
re

nt
ag

e 
in

 k
no

w
n 

ho
rs

e 
fa

m
ili

es
. T

he
 1

01
 S

N
Ps

 
co

rr
ec

tly
 re

so
lv

ed
 th

e 
pa

re
nt

ag
e 

of
 9

9.
9%

 o
f o

ff
sp

rin
g.

Ji
 e

t a
l. 

(2
01

3)
C

ac
ao

 (t
re

e)
0

SN
P-

PC
R,

 7
0

c
er

v
u

s 3
.0

Pa
re

nt
ag

e 
an

al
ys

is
 w

as
 u

se
d 

to
 a

ss
ig

n 
pa

re
nt

s 
of

 fa
rm

er
 v

ar
ie

tie
s 

of
 c

ac
ao

. T
he

 S
N

Ps
 

as
si

gn
ed

 p
ar

en
ta

ge
 fo

r 2
8/

53
 v

ar
ie

tie
s 

at
 8

0%
 c

on
fid

en
ce

. T
he

 re
fe

re
nc

e 
“p

ar
en

ts
” (

ca
ca

o 
cl

on
es

) w
er

e 
no

t t
he

 d
ire

ct
 p

ar
en

ts
 o

f t
he

 fa
rm

er
 v

ar
ie

tie
s,

 h
en

ce
 th

e 
lo

w
 a

ss
ig

nm
en

t r
at

e.

Ji
n,

 K
on

g,
 Y

u,
 a

nd
 L

i 
(2

01
4)

Pa
ci

fic
 

oy
st

er
 

(m
ol

lu
sc

)

0
SN

P-
PC

R,
 4

8
c

er
v

u
s 3

.0
A

n 
an

al
ys

is
 o

f s
ix

 fa
m

ili
es

 s
ho

w
ed

 th
at

 4
0 

SN
Ps

 p
ro

ve
d 

su
ff

ic
ie

nt
 to

 a
ss

ig
n 

al
l o

ff
sp

rin
g 

to
 

pa
re

nt
s.

La
bu

sc
ha

gn
e,

 N
up

en
, 

Ko
tz

e,
 G

ro
bl

er
, a

nd
 

D
al

to
n 

(2
01

5)

A
fr

ic
an

 
pe

ng
ui

n 
(b

ird
)

10
SN

P-
PC

R,
 3

1
c

er
v

u
s 3

.0
3,

 pa
rf

ex
Fo

r p
ar

en
ta

ge
 a

na
ly

si
s 

in
 a

 s
m

al
l c

ap
tiv

e 
po

pu
la

tio
n,

 S
N

Ps
 p

er
fo

rm
ed

 a
t l

ea
st

 a
s 

w
el

l a
s 

m
ic

ro
sa

te
lli

te
s.

Li
u,

 P
al

ti,
 G

ao
, a

nd
 

Re
xr

oa
d 

(2
01

6)
Ra

in
bo

w
 

tr
ou

t (
fis

h)
0

SN
P-

PC
R,

 9
5

c
er

v
u

s 3
.0

.7
, s

n
pp

it
Pa

re
nt

ag
e 

w
as

 a
ss

ig
ne

d 
fo

r f
is

h 
w

ith
 a

 k
no

w
n 

pe
di

gr
ee

. T
he

 9
5-

SN
P 

pa
ne

l w
as

 s
uf

fic
ie

nt
 to

 
co

m
pl

et
el

y 
re

so
lv

e 
pa

re
nt

ag
e.

 C
ER

V
U

S 
sl

ig
ht

ly
 o

ut
pe

rf
or

m
ed

 S
N

PP
IT

.

M
cC

lu
re

 e
t a

l. 
(2

01
5)

C
at

tle
 

(m
am

m
al

)
0

SN
P-

C
hi

p,
 8

00
C

us
to

m
 E

xc
lu

si
on

 
A

pp
ro

ac
h

D
iff

er
en

t n
um

be
rs

 o
f S

N
Ps

 w
er

e 
te

st
ed

 fo
r p

ar
en

ta
ge

 v
al

id
at

io
n 

in
 c

at
tle

. T
he

 a
ut

ho
rs

 
re

co
m

m
en

d 
us

in
g 

at
 le

as
t 5

00
 S

N
Ps

.

M
cC

lu
re

 e
t a

l. 
(2

01
8)

C
at

tle
 

(m
am

m
al

)
0

SN
P-

C
hi

p,
 8

00
C

us
to

m
 E

xc
lu

si
on

 
A

pp
ro

ac
h

Th
e 

go
al

 o
f t

hi
s 

st
ud

y 
w

as
 to

 d
ev

el
op

 b
et

te
r q

ua
lit

y 
co

nt
ro

l p
ra

ct
ic

es
 fo

r S
N

P-
ba

se
d 

pe
di

gr
ee

 
va

lid
at

io
n.

 T
he

 a
ut

ho
rs

 re
co

m
m

en
d 

at
 le

as
t 5

00
 S

N
Ps

 b
e 

us
ed

 fo
r p

ar
en

ta
ge

 v
al

id
at

io
n.

Pa
ne

tt
o 

et
 a

l. 
(2

01
7)

C
at

tle
 

(m
am

m
al

)
0

SN
P-

C
hi

p,
 3

,8
94

Ex
cl

us
io

n
A

n 
an

al
ys

is
 o

f R
ed

 S
in

dh
i c

at
tle

 s
ho

w
ed

 th
at

 a
s 

fe
w

 a
s 

71
 S

N
Ps

 w
er

e 
su

ff
ic

ie
nt

 fo
r p

ar
en

ta
ge

 
ve

rif
ic

at
io

n 
w

ith
 e

xt
re

m
el

y 
hi

gh
 c

on
fid

en
ce

.

Sc
hu

nt
er

, P
as

cu
al

, 
G

ar
za

, R
av

en
to

s,
 a

nd
 

M
ac

ph
er

so
n 

(2
01

4)

Bl
ac

k‐
fa

ce
d 

bl
en

ny
 

(fi
sh

)

0
SN

P-
PC

R,
 1

92
c

er
v

u
s, 

co
lo

n
y

G
en

ot
yp

ed
 re

cr
ui

ts
 to

 te
st

 w
he

th
er

 la
rv

ae
 s

et
tle

 b
ac

k 
in

 th
ei

r n
at

al
 lo

ca
tio

n.
 P

ar
en

ta
ge

 
an

al
ys

is
 re

ve
al

ed
 li

m
ite

d 
su

cc
es

sf
ul

 d
is

pe
rs

al
 a

nd
 o

nl
y 

sh
or

t‐t
er

m
 d

is
pe

rs
al

 e
ve

nt
s.

 S
ib

sh
ip

 
re

co
ns

tr
uc

tio
n 

re
ve

al
ed

 th
at

 re
cr

ui
tm

en
t c

an
 s

til
l o

cc
ur

 q
ui

te
 d

is
ta

nt
 fr

om
 th

e 
na

ta
l s

ite
. 

Th
is

 s
tu

dy
 s

ho
w

s 
th

at
 in

fo
rm

at
io

n 
pr

ov
id

ed
 b

y 
pa

re
nt

ag
e 

an
al

ys
is

 a
nd

 k
in

sh
ip

 re
co

ns
tr

uc
‐

tio
n 

ca
n 

be
 c

om
pl

em
en

ta
ry

.

TA
B

LE
 1

 (C
on

tin
ue

d)

(C
on

tin
ue

d)



548  |     FLANAGAN ANd JONES

Re
fe

re
nc

e
O

rg
an

is
m

N
um

be
r o

f 
m

ic
ro

sa
te

lli
te

s
SN

P 
m

et
ho

d,
 

nu
m

be
r o

f S
N

Ps
Pa

re
nt

ag
e 

an
al

ys
is

 
so

ft
w

ar
e

Pa
re

nt
ag

e 
re

le
va

nc
e 

an
d 

co
nc

lu
si

on
s

St
ee

le
 e

t a
l. 

(2
01

3)
St

ee
lh

ea
d 

(fi
sh

)
17

SN
P-

PC
R,

 1
88

sn
pp

it
 fo

r S
N

Ps
, c

er
v

u
s 

3.
0.

3 
fo

r 
m

ic
ro

sa
te

lli
te

s

Te
st

ed
 th

e 
fe

as
ib

ili
ty

 o
f p

ar
en

ta
ge

-b
as

ed
 ta

gg
in

g 
ba

se
d 

on
 S

N
P 

m
ar

ke
rs

. A
s 

fe
w

 a
s 

72
 S

N
Ps

 
ca

n 
pe

rf
or

m
 a

s 
w

el
l f

or
 p

ar
en

ta
ge

 a
na

ly
si

s 
as

 1
7 

m
ic

ro
sa

te
lli

te
 m

ar
ke

rs
.

St
ru

ck
en

 e
t a

l. 
(2

01
4)

Ea
st

 A
si

an
 

ca
tt

le
 

(m
am

m
al

)

0
SN

P-
C

hi
p,

 2
00

C
us

to
m

 e
xc

lu
si

on
 

ap
pr

oa
ch

 (H
ay

es
, 

20
11

)

In
 a

 te
st

 o
f t

w
o 

co
m

m
on

ly
 u

se
d 

SN
P 

pa
ne

ls
 in

 c
at

tle
, r

es
ul

ts
 s

ho
w

ed
 th

at
 1

00
 S

N
Ps

 p
ro

du
ce

d 
ab

ou
t 3

%
–4

%
 fa

ls
e 

po
si

tiv
es

, w
he

re
as

 2
00

 S
N

Ps
 re

so
lv

ed
 p

ar
en

ta
ge

 p
er

fe
ct

ly
.

St
ru

ck
en

 e
t a

l. 
(2

01
5)

C
at

tle
 a

nd
 

sh
ee

p 
(m

am
m

al
s)

0
SN

P-
C

hi
p,

 
33

,1
59

 (c
at

tle
) 

or
 4

8,
59

9 
(s

he
ep

)

C
us

to
m

 e
xc

lu
si

on
 

ap
pr

oa
ch

St
ar

tin
g 

w
ith

 a
 p

an
el

 in
cl

ud
in

g 
te

ns
 o

f t
ho

us
an

ds
 o

f S
N

Ps
, m

ul
tip

le
 s

m
al

le
r p

an
el

s 
w

er
e 

te
st

ed
. T

he
 a

ut
ho

rs
 c

on
cl

ud
e 

th
at

 a
t l

ea
st

 2
00

 S
N

Ps
 a

re
 n

ec
es

sa
ry

 fo
r r

el
ia

bl
e 

pa
re

nt
ag

e 
te

st
in

g.

Te
lfe

r e
t a

l. 
(2

01
5)

Eu
ca

ly
pt

us
 

(tr
ee

)
13

, 1
6

SN
P-

C
hi

p,
 1

06
M

an
ua

l e
xc

lu
si

on
In

 a
n 

ex
cl

us
io

n-
ba

se
d 

an
al

ys
is

, t
he

 1
06

 S
N

P 
m

ar
ke

rs
 o

ut
pe

rf
or

m
ed

 a
 p

an
el

 o
f 1

3 
m

ic
ro

sa
te

l‐
lit

es
 a

nd
 e

qu
al

le
d 

th
e 

pe
rf

or
m

an
ce

 o
f 1

6 
m

ic
ro

sa
te

lli
te

s.

Th
on

gd
a 

et
 a

l. 
(2

01
8)

Ea
st

er
n 

oy
st

er
 

(m
ol

lu
sc

)

16
SN

P-
PC

R,
 5

8
c

er
v

u
s 3

.0
.7

, s
n

pp
it

 1
.0

Th
is

 s
tu

dy
 d

ev
el

op
ed

 a
 p

an
el

 o
f 5

8 
SN

Ps
 a

nd
 te

st
ed

 th
em

 in
 fa

rm
ed

 p
op

ul
at

io
ns

 o
f o

ys
te

rs
. 

Pa
re

nt
ag

e 
as

si
gn

m
en

ts
 fr

om
 5

8 
SN

Ps
 la

rg
el

y 
ag

re
ed

 (9
8.

74
%

) w
ith

 a
ss

ig
nm

en
t b

as
ed

 o
n 

16
 

m
ic

ro
sa

te
lli

te
 lo

ci
.

To
ka

rs
ka

 e
t a

l. 
(2

00
9)

Eu
ro

pe
an

 
bi

so
n 

(m
am

m
al

)

17
SN

P-
C

hi
p,

 9
60

c
er

v
u

s 3
.0

.3
Lo

w
 g

en
et

ic
 d

iv
er

si
ty

 re
nd

er
ed

 th
e 

m
ic

ro
sa

te
lli

te
s 

un
su

ita
bl

e 
fo

r p
ar

en
ta

ge
 a

na
ly

si
s.

 
Si

m
ul

at
io

ns
 s

ho
w

ed
 th

at
 a

s 
fe

w
 a

s 
60

–1
00

 S
N

Ps
 c

om
pl

et
el

y 
re

so
lv

ed
 p

ar
en

ta
ge

.

To
rt

er
ea

u,
 M

or
en

o,
 

To
ss

er
‐K

lo
pp

, S
er

vi
n,

 
an

d 
Ra

ou
l (

20
17

)

Sh
ee

p 
(m

am
m

al
)

0
SN

P-
PC

R,
 2

49
C

us
to

m
 m

ax
im

um
‐

lik
el

ih
oo

d 
(B

oi
ch

ar
d,

 
Ba

rb
ot

te
, &

 
G

en
es

to
ut

, 2
01

4)

A
 S

N
P-

C
hi

p 
w

as
 u

se
d 

to
 id

en
tif

y 
SN

Ps
 s

ui
ta

bl
e 

fo
r a

 p
ar

en
ta

ge
 te

st
in

g 
pa

ne
l. 

A
t l

ea
st

 1
75

 o
f 

th
es

e 
SN

Ps
 w

er
e 

re
qu

ire
d 

fo
r a

cc
ur

at
e 

pa
re

nt
ag

e 
as

si
gn

m
en

t.

W
el

le
r e

t a
l. 

(2
01

0)
H

ol
st

ei
n 

C
at

tle
 

(m
am

m
al

)

0
SN

P-
C

hi
p,

 
38

,8
28

C
us

to
m

 e
xc

lu
si

on
 

ap
pr

oa
ch

Th
is

 s
tu

dy
 g

en
ot

yp
ed

 fa
th

er
s 

an
d 

so
ns

 a
t n

ea
rly

 4
0,

00
0 

SN
Ps

. T
he

se
 g

en
ot

yp
es

 a
llo

w
ed

 
ex

cl
us

io
n 

of
 b

ul
ls

 in
co

rr
ec

tly
 a

ss
um

ed
 to

 b
e 

si
re

s 
an

d 
an

 e
st

im
at

e 
of

 th
e 

SN
P 

ge
no

ty
pi

ng
 

er
ro

r r
at

e 
(~

0.
05

%
).

W
ig

ga
ns

 e
t a

l. 
(2

00
9)

D
ai

ry
 c

at
tle

 
(m

am
m

al
)

0
SN

P-
C

hi
p,

 
40

,8
74

C
us

to
m

 e
xc

lu
si

on
 

ap
pr

oa
ch

A
 c

om
pa

ris
on

 o
f k

no
w

n 
pa

re
nt

–o
ff

sp
rin

g 
pa

irs
 s

ho
w

ed
 th

at
 th

is
 p

an
el

 o
f S

N
Ps

 c
ou

ld
 e

as
ily

 
di

st
in

gu
is

h 
be

tw
ee

n 
tr

ue
 p

ar
en

ts
 a

nd
 u

nr
el

at
ed

 in
di

vi
du

al
s.

Xu
 e

t a
l. 

(2
01

7)
C

om
m

on
 

C
ar

p 
(fi

sh
)

0
SN

P-
PC

R,
 4

8
c

er
v

u
s 3

.0
.7

Ef
fic

ac
y 

of
 S

N
P-

ba
se

d 
pa

re
nt

ag
e 

an
al

ys
is

 w
as

 te
st

ed
 o

n 
si

re
–d

am
–o

ff
sp

rin
g 

tr
io

s 
of

 c
om

m
on

 
ca

rp
. A

ss
ig

nm
en

t r
at

es
 b

as
ed

 o
n 

C
ER

V
U

S 
w

er
e 

ap
pr

ox
im

at
el

y 
87

.3
%

.

Yu
 e

t a
l. 

(2
01

5)
Pi

g (m
am

m
al

)
12

SN
P-

C
hi

p,
 9

60
c

er
v

u
s 3

.0
In

 a
 s

am
pl

e 
of

 2
4 

pi
gs

, a
s 

fe
w

 a
s 

30
 S

N
Ps

 p
ro

vi
de

d 
be

tt
er

 p
ar

en
ta

ge
 re

so
lv

in
g 

po
w

er
 th

an
 a

 
do

ze
n 

m
ic

ro
sa

te
lli

te
s.

Zh
an

g 
et

 a
l. 

(2
01

8)
C

at
tle

 
(m

am
m

al
)

0
SN

P-
C

hi
p,

 
77

4,
66

0
c

er
v

u
s 3

.0
A

ft
er

 g
en

ot
yp

in
g 

1,
07

4 
ca

lv
es

 w
ith

 a
n 

Ill
um

in
a 

Bo
vi

ne
H

D
 B

ea
dC

hi
p,

 3
03

 S
N

Ps
 w

er
e 

id
en

tif
ie

d 
as

 h
ig

hl
y 

in
fo

rm
at

iv
e.

 T
he

 to
p 

50
 o

f t
he

se
 w

er
e 

te
st

ed
 in

 p
at

er
ni

ty
 a

na
ly

si
s 

an
d 

w
er

e 
fo

un
d 

to
 re

so
lv

e 
pa

te
rn

ity
 in

 9
9.

89
%

 o
f c

as
es

 in
 C

hi
ne

se
 S

im
m

en
ta

l c
at

tle
.

N
ot

e .
 E

ac
h 

m
et

ho
d 

us
ed

 a
n 

ex
is

tin
g 

pa
ne

l o
f r

ef
er

en
ce

 S
N

Ps
. S

N
P-

PC
R 

re
fe

rs
 to

 a
ny

 S
N

P 
ge

no
ty

pi
ng

 te
ch

ni
qu

e 
th

at
 p

ro
m

in
en

tly
 fe

at
ur

es
 a

 P
C

R 
am

pl
ifi

ca
tio

n 
of

 a
 s

m
al

l n
um

be
r o

f s
pe

ci
fic

 lo
ci

. E
xa

m
pl

es
 

in
cl

ud
e 

SN
Pl

ex
 (A

BI
; e

.g
., 

C
ra

m
er

 e
t a

l.,
 2

01
1)

, O
lig

o 
Li

ga
tio

n 
A

ss
ay

 (O
LA

; e
.g

., 
La

nd
eg

re
n,

 K
ai

se
r, 

Sa
nd

er
s,

 &
 H

oo
d,

 1
98

8)
, T

aq
M

an
 (A

BI
; e

.g
., 

H
au

se
r e

t a
l.,

 2
01

1)
, i

PL
EX

/M
as

sA
RR

AY
 (A

ge
na

 B
io

sc
ie

nc
e;

 
e.

g.
, S

el
la

rs
 e

t a
l.,

 2
01

4,
 W

ei
nm

an
, S

ol
om

on
, &

 R
ub

en
st

ei
n,

 2
01

5,
 Z

ha
o 

et
 a

l.,
 2

01
8)

, F
lu

id
ig

m
 In

te
gr

at
ed

 F
lu

id
ic

 C
irc

ui
ts

 (F
lu

id
ig

m
; e

.g
., 

Le
w

 e
t a

l.,
 2

01
5)

 a
nd

 Io
n 

A
m

pl
iS

eq
 (T

he
rm

o 
Fi

sh
er

 S
ci

en
tif

ic
; e

.g
., 

Be
ac

ha
m

 e
t a

l.,
 2

01
7;

 B
ea

ch
am

, W
al

la
ce

, J
on

se
n 

et
 a

l.,
 2

01
8,

 B
ea

ch
am

, W
al

la
ce

, M
ac

C
on

na
ch

ie
 e

t a
l.,

 2
01

8)
.

TA
B

LE
 1

 (C
on

tin
ue

d)



     |  549FLANAGAN ANd JONES

TA
B

LE
 2

 
Pa

re
nt

ag
e 

an
al

ys
is

 u
si

ng
 s

om
e 

fo
rm

 o
f n

ov
el

 n
ex

t-
ge

ne
ra

tio
n 

se
qu

en
ci

ng
 to

 id
en

tif
y 

SN
Ps

 to
 s

ub
se

qu
en

tly
 g

en
ot

yp
e 

us
in

g 
"c

la
ss

ic
al

" S
N

Ps

Re
fe

re
nc

e
O

rg
an

is
m

N
um

be
r o

f 
m

ic
ro

sa
te

lli
te

s
N

ex
t‐

ge
n 

m
et

ho
d

N
um

be
r o

f 
SN

Ps
Pa

re
nt

ag
e 

an
al

ys
is

 
so

ft
w

ar
e

Pa
re

nt
ag

e 
re

le
va

nc
e 

an
d 

co
nc

lu
si

on
s

G
ut

ie
rr

ez
 e

t a
l. 

(2
01

7)
Pa

ci
fic

 a
nd

 E
ur

op
ea

n 
oy

st
er

s 
(m

ol
lu

sc
)

0
W

ho
le

‐g
en

om
e 

se
qu

en
ci

ng
, 

R
A

D
-s

eq

~2
7,

00
0,

 
~1

1,
00

0
c

er
v

u
s 3

.0
.7

, 
id

en
tit

y‐
by

‐s
ta

te
 

cl
us

te
rin

g

W
ho

le
-g

en
om

e 
se

qu
en

ci
ng

 a
nd

 R
A

D
-s

eq
 w

er
e 

us
ed

 to
 

id
en

tif
y 

SN
Ps

, w
hi

ch
 p

ro
vi

de
d 

th
e 

m
ar

ke
rs

 fo
r a

 S
N

P 
ar

ra
y.

 T
he

 S
N

P 
ar

ra
y 

w
as

 te
st

ed
 in

 a
 p

ar
en

ta
ge

 a
na

ly
si

s 
in

vo
lv

in
g 

th
re

e 
nu

cl
ea

r f
am

ili
es

 (w
ith

 5
 p

ar
en

ts
 a

nd
 1

61
 

of
fs

pr
in

g)
. T

he
 S

N
P 

ar
ra

y 
pe

rf
or

m
ed

 w
el

l i
n 

as
si

gn
in

g 
of

fs
pr

in
g 

to
 fa

m
ili

es
.

H
ar

ne
y 

et
 a

l. 
(2

01
8)

Eu
ro

pe
an

 a
ba

lo
ne

 
(m

ol
lu

sc
)

0
Tr

an
sc

rip
to

m
e 

(H
ar

ne
y 

et
 a

l.,
 

20
16

)

12
3

c
er

v
u

s 3
.0

, v
it

a
ss

ig
n

 
8.

5
A

na
ly

si
s 

of
 k

no
w

n 
fa

m
ili

es
 o

f a
ba

lo
ne

 re
ve

al
ed

 th
at

 
C

ER
V

U
S 

co
rr

ec
tly

 a
ss

ig
ne

d 
99

.9
9%

 o
f o

ff
sp

rin
g 

to
 th

ei
r 

pa
re

nt
s.

 C
ER

V
U

S 
sl

ig
ht

ly
 o

ut
pe

rf
or

m
ed

 th
e 

ex
cl

us
io

n 
m

et
ho

d 
im

pl
em

en
te

d 
in

 V
IT

A
SS

IG
N

.

H
ol

m
an

 e
t a

l. 
(2

01
7)

A
tla

nt
ic

 s
al

m
on

 (f
is

h)
0

sd
R

A
D

-s
eq

94
co

lo
n

y 
2.

0.
6.

2
U

se
d 

R
A

D
-s

eq
 to

 id
en

tif
y 

SN
Ps

 to
 b

e 
de

ve
lo

pe
d 

in
to

 a
 

m
ar

ke
r s

et
. I

n 
po

pu
la

tio
ns

 in
vo

lv
in

g 
kn

ow
n 

cr
os

se
s,

 9
4 

SN
Ps

 re
so

lv
ed

 p
ar

en
ta

ge
 w

ith
 1

00
 %

 a
cc

ur
ac

y.

K
ai

se
r e

t a
l. 

(2
01

7)
Bl

ue
 w

ar
bl

er
 (b

ird
)

6
RN

A-
se

q
97

c
er

v
u

s 3
.0

N
ov

el
 S

N
Ps

, d
ev

el
op

ed
 u

si
ng

 R
N

A-
se

q 
bu

t g
en

ot
yp

ed
 b

y 
a 

SN
P-

PC
R 

te
ch

ni
qu

e,
 w

er
e 

co
m

pa
re

d 
to

 m
ic

ro
sa

te
lli

te
s.

 A
 

pa
ne

l o
f 9

7 
SN

Ps
 h

ad
 a

pp
ro

xi
m

at
el

y 
th

e 
sa

m
e 

pa
re

nt
ag

e 
re

so
lv

in
g 

po
w

er
 a

s 
si

x 
m

ic
ro

sa
te

lli
te

 lo
ci

.

La
uc

ou
 e

t a
l. 

(2
01

8)
G

ra
pe

vi
ne

 (p
la

nt
 c

ro
p)

20
W

ho
le

‐g
en

om
e 

se
qu

en
ci

ng
10

,2
07

fa
m

o
z

W
ho

le
‐g

en
om

e 
re

se
qu

en
ci

ng
, v

ia
 Il

lu
m

in
a,

 w
as

 u
se

d 
to

 
de

ve
lo

p 
a 

SN
P-

C
hi

p.
 T

he
se

 S
N

Ps
 w

er
e 

us
ed

 to
 in

ve
st

ig
at

e 
pa

re
nt

ag
e 

fo
r 7

83
 g

ra
pe

vi
ne

 c
ul

tiv
ar

s,
 a

nd
 th

e 
re

su
lts

 
w

er
e 

ve
rif

ie
d 

us
in

g 
m

ic
ro

sa
te

lli
te

 d
at

a.

Le
w

 e
t a

l. 
(2

01
5)

D
el

ta
 s

m
el

t (
fis

h)
0

sd
R

A
D

-s
eq

24
c

er
v

u
s 3

.0
A

 S
N

P 
pa

ne
l c

on
si

st
in

g 
of

 a
s 

fe
w

 a
s 

24
 m

ar
ke

rs
 c

an
 

ef
fe

ct
iv

el
y 

re
so

lv
e 

pa
re

nt
ag

e 
in

 c
ap

tiv
e 

po
pu

la
tio

ns
.

N
gu

ye
n,

 H
ay

es
, a

nd
 In

gr
am

 
(2

01
4)

Bl
ue

 m
us

se
l (

m
ol

lu
sc

)
10

G
BS

17
9

M
as

te
rB

ay
es

In
 a

 h
at

ch
er

y 
se

tt
in

g,
 m

us
se

ls
 w

er
e 

as
si

gn
ed

 to
 fa

m
ili

es
 to

 
es

tim
at

e 
he

rit
ab

ili
tie

s 
an

d 
se

le
ct

io
n 

on
 tr

ai
ts

. 
M

ic
ro

sa
te

lli
te

s 
as

si
gn

ed
 o

nl
y 

62
.6

%
, w

he
re

as
 S

N
Ps

 
as

si
gn

ed
 9

2.
5%

. M
ic

ro
sa

te
lli

te
 d

at
a 

ar
e 

fr
om

 N
gu

ye
n,

 
H

ay
es

, G
ut

hr
id

ge
, A

b 
Ra

hi
m

, a
nd

 In
gr

am
 (2

01
1)

.

Se
lla

rs
 e

t a
l. 

(2
01

4)
Bl

ac
k 

tig
er

 s
hr

im
p 

(c
ru

st
ac

ea
n)

13
RN

A-
se

q
12

2
C

us
to

m
 C

ER
V

U
S‐

lik
e 

an
al

ys
is

C
om

pa
re

d 
as

si
gn

m
en

t b
as

ed
 o

n 
m

ic
ro

sa
te

lli
te

s 
an

d 
SN

Ps
. 

Th
e 

SN
Ps

 p
ro

vi
de

d 
m

or
e 

po
w

er
.

W
ei

nm
an

 e
t a

l. 
(2

01
5)

Su
pe

rb
 s

ta
rli

ng
s 

(b
ird

)
15

RN
A-

se
q

10
2

c
er

v
u

s 3
.0

, c
o

lo
n

y 
2.

0
C

om
pa

re
d 

m
ar

ke
rs

 fo
r p

ar
en

ta
ge

 a
ss

ig
nm

en
t i

n 
a 

co
op

er
at

iv
e 

br
ee

de
r. 

M
ic

ro
sa

te
lli

te
s 

an
d 

SN
Ps

 p
er

fo
rm

ed
 

si
m

ila
rly

.

Zh
ao

 e
t a

l. 
(2

01
8)

Fl
or

id
a 

ba
ss

 (f
is

h)
10

G
BS

58
c

er
v

u
s 3

.0
, s

n
pp

it
Th

is
 s

tu
dy

 d
ev

el
op

ed
 a

 n
ov

el
 S

N
P 

pa
ne

l. 
A

 c
om

pa
ris

on
 o

f 
SN

Ps
 to

 m
ic

ro
sa

te
lli

te
s 

sh
ow

ed
 th

at
 5

8 
SN

Ps
 p

er
fo

rm
ed

 
be

tt
er

 th
an

 1
0 

m
ic

ro
sa

te
lli

te
s.

 T
he

 p
ro

gr
am

 sn
pp

it
 s

lig
ht

ly
 

ou
tp

er
fo

rm
ed

 C
ER

V
U

S.

N
ot

e.
 A

ll 
of

 th
es

e 
st

ud
ie

s 
us

ed
 th

e 
Ill

um
in

a 
se

qu
en

ci
ng

 p
la

tf
or

m
 d

ur
in

g 
th

e 
ne

xt
-g

en
er

at
io

n 
se

qu
en

ci
ng

 s
te

p.
 S

N
Ps

 w
er

e 
su

bs
eq

ue
nt

ly
 a

ss
ay

ed
 u

si
ng

 te
ch

ni
qu

es
 s

uc
h 

as
 th

os
e 

lis
te

d 
in

 T
ab

le
 1

 c
ap

tio
n.



550  |     FLANAGAN ANd JONES

1998; Nielsen, Mattila, Clapham, & Palsbøll, 2001; Sancristobal 
& Chevalet, 1997). As a result, we entered the new millennium 
with even better tools, coupled with the molecular techniques we 
needed to apply them (reviewed in Jones & Ardren, 2003; Jones, 
Small, Paczolt, & Ratterman, 2010). Those who worked on parent‐
age analysis in the 1990s could be forgiven if they looked back 
upon those times as the golden age of parentage.

Even though parentage analysis seemed to have been largely 
solved by microsatellites, some problems persisted. For instance, 
microsatellites were extremely successful in species in which they 
were abundant in the genome and highly polymorphic, such as 
most fishes (DeWoody & Avise, 2000). However, many species 
harbour little polymorphism even at microsatellite loci, making 
robust parentage analysis difficult. In addition, microsatellite 
markers still require quite a large initial investment in terms of 
identifying loci, designing locus‐specific primers and optimizing 
PCR conditions. Moreover, the scoring of microsatellite markers is 
often an art form of its own, calling for often poorly documented 
criteria regarding the separation of true alleles from artefactual 
bands on sequencing gels. Thus, a successful microsatellite‐based 
study of parentage still represents a significant investment in 
terms of labour and financial resources (see Hodel et al., 2016 for 
a recent review). Given these constraints, microsatellites still have 
their uses but there does seem to be room for newer technologies 
to supplement, or even supplant, microsatellites as the marker of 
choice for parentage.

2.2 | Parentage analysis using traditional SNPs

With the availability of genomic resources and multiplexed 
methods to assay many single nucleotide polymorphisms (SNPs) si‐
multaneously, researchers have moved towards using these types 
of SNP approaches to conduct parentage analysis (Table 1). Some 
researchers have turned to SNPs because of low polymorphism in 
microsatellites in their species (e.g., Cramer, Hall, Kort, Lovette, 
& Vehrencamp, 2011), but SNPs also provide other practical im‐
provements such as easier automation and scoring (Anderson & 
Garza, 2006), plus lower mutation rates (Amorim & Pereira, 2005; 
Fisher, Malthus, Walker, Corbett, & Spelman, 2009). Despite these 
favourable features of SNPs, we found a total of only 38 papers 
that used these traditional SNP approaches for parentage analy‐
sis (Table 1). A substantial number of these studies compared the 
power SNPs to microsatellites for parentage analysis (Table 1), and 
they universally concluded that SNPs were entirely appropriate 
for this endeavour.

2.3 | Parentage analysis in the next‐generation 
sequencing era

The use of next‐generation sequencing in parentage analysis is 
rapidly gaining momentum. The first application of next‐genera‐
tion sequencing in this arena was to use the easily obtainable 
sequence data to develop microsatellite markers (e.g., Santana 

et al., 2009; Castoe et al., 2010; Guichoux et al., 2011) or SNP 
markers that can be amplified via PCR and assayed using a highly 
multiplexed approach, such as SNPlex (Cramer et al., 2011), 
iPLEX/MassARRAY (Sellars et al., 2014), Fluidigm Integrated 
Fluidic Circuits (Lew et al., 2015) or any of a number of related 
approaches. Table 2 lists the studies that have taken a next‐gen‐
eration sequencing approach to the identification of SNPs in the 
genome, followed by one of these more traditional assays to score 
SNPs in the context of parentage analysis. With the exception 
of two studies that used next‐generation sequencing to develop 
SNP arrays, these studies generally used less than 200 SNPs to 
assign parentage. The 10 studies listed in Table 2 reinforce the 
conclusion from traditional SNP studies (Table 1) that SNPs per‐
form well in parentage.

A natural next step, facilitated by high‐throughput sequencing, 
is to genotype SNPs directly by using any one of a number of ge‐
notyping-by-sequencing approaches (Table 3). These next-genera‐
tion approaches to parentage analysis are conceptually identical to 
the previous‐generation approaches, and the new data sets can be 
analysed by the current generation of parentage analysis software. 
Despite these similarities, some additional concerns begin to arise 
with true next‐generation parentage analysis, and we will discuss 
these concerns as we describe each method. Due to the distinctions 
between these markers and SNPs derived through more traditional 
means, we will refer to these markers as “next‐generation markers” 
throughout the manuscript.

A notable feature of the studies of parentage using SNPs 
(Tables 1‒3) is that virtually all studies have concluded that a 
relatively small number of SNP markers, from 60 to 200, usually 
provides resolving power equal to or better than that provided by 
the available microsatellite markers for the species under consider‐
ation. The exact number of SNPs required will depend on a number 
of factors, including the minor allele frequencies of the SNPs, link‐
age disequilibrium among SNPs, the frequency of null alleles and 
genotyping errors, the number of parental pairs, the distribution of 
offspring numbers per family and the mating design (Anderson & 
Garza, 2006; Jones & Ardren, 2003; Kalinowski, Taper, & Marshall, 
2007). Despite these factors, the empirical results show clearly 
that as few as several hundred SNPs are sufficient for most par‐
entage analyses. The power of SNPs for parentage analysis was ap‐
preciated over a decade ago by theoreticians (Anderson & Garza, 
2006), but empiricists have been patiently waiting for cheap and 
effective SNP approaches to catch up with theory, especially in 
nonmodel systems.

Given these new developments on the marker front, as well 
as continued progress in analytical approaches, the parentage 
analysis landscape is perhaps more confusing than it has ever 
been in the past. In some systems with well‐established mi‐
crosatellite markers, a more traditional approach may be best, 
whereas other systems may call for a next‐generation approach. 
Most of the next‐generation approaches are extremely cheap 
on a per‐marker basis but expensive on a per‐individual basis. 
Some of these approaches require well‐developed molecular and 
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TA B L E  3   Parentage analysis using next-generation sequencing to genotype the SNPs

Reference Organism

Number of 
microsatel‐
lites

Next‐gen 
method

Number of 
SNPs

Parentage 
analysis 
software Parentage relevance and conclusions

Alam, Neal, 
O'Connor, 
Kilian, and 
Topp (2018)

Macadamia 
(tree)

0 DArT-seq 3,956 cervus 3.0.7 DArT-seq is a reduced representation sequencing 
approach, similar to RAD-seq. Parentage 
analysis based on DArT-seq SNPs was used to 
identify the parental cultivars for 18 seedlings.

Andrews et al. 
(2018)

Mexican grey 
wolf and 
bighorn 
sheep 
(mammal)

22 (wolf), 
14 (sheep)

ddRAD-seq 139–363 
(wolf), 
142–523 
(sheep)

cervus 3.0 This study developed a pipeline for assigning 
parentage using RAD-seq data. SNPs that were 
generated from de novo RAD-seq analysis and 
from reference‐guided analysis were compared 
to microsatellites. The results demonstrated 
that SNPs had higher power than the microsat‐
ellite panels.

Boyle et al. 
(2018)

Acacia ants 
(insect)

0 ddRAD-seq 309–764 colony A ddRAD-seq approach was used to generate 
several hundred SNPs for four species of 
acacia‐associated ants. Parentage analysis 
revealed the mating systems of these ants and 
confirmed that ddRAD-seq is a viable method 
for this type of study.

Head, Kahn, 
Henshaw, 
Keogh, and 
Jennions 
(2017)

Mosquitofish 
(fish)

0 DArT-seq 3.171 Custom 
Exclusion

A parentage analysis in captive populations was 
used to examine the effects of sex ratio and 
habitat complexity on sexual selection in 
mosquitofish. Samples were genotyped using 
DArT-seq, and parentage was assigned by 
comparing Hamming distances (Hu, Liu, Jin, 
Ropers, & Wienker, 2015) among offspring and 
putative parents. All offspring were unambigu‐
ously assigned to parents (but only 10 candidate 
males were present per population).

Johnson, 
Gaddis, Cairns, 
and Krutovsky 
(2017)

Mountain 
hemlock 
(tree)

0 ddRAD-seq 353 cervus 3.0.3 The goal was to assess mode of reproduction and 
seed sources at the arctic treeline. Only 18 of 
161 plants were assigned a parent from within 
the 860 m × 600 m study transect, indicating 
substantial seed dispersal or serious technical 
artefacts.

Kess, Gross, 
Harper, and 
Boulding 
(2016)

Marine snail 
(mollusc)

0 ddRAD-seq 1,131 colony 
2.0.4.4

Used ddRAD-seq to determine whether the 
sequenced male is the true father of putative 
full‐siblings from a cross of a hybrid father and 
parental ecotype mother. All offspring were 
assigned to the sequenced father, providing 
evidence that the female had not been multiply 
mated during crosses.

O'Brien, Keogh, 
Silla, and Byrne 
(2018)

Red‐backed 
toadlet 
(amphibian)

0 DArT-seq 15,746 Custom 
Exclusion

This study examined parentage in the red‐backed 
toadlet and assigned parentage using the 
Hamming distance (Hu et al., 2015). Cut‐offs 
were determined empirically. Results showed 
that this species is polygynous with intense 
male–male competition.

Palaiokostas, 
Kocour, Prchal, 
and Houston 
(2018)

Common carp 
(fish)

0 RAD-seq 12,311 Sibship 
analysis 
with R/
hsphase

Offspring were produced from controlled 
crosses but raised together, requiring parentage 
analysis to determine family of origin. The 
parentage analysis was conducted with the 
pedigree analysis R package hsphase (Ferdosi, 
Kinghorn, Werf, Lee, & Gondro, 2014), and the 
data were used to estimate heritability and 
perform a GWAS for body size.

(Continues)
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bioinformatics skills, far beyond what is necessary for micro‐
satellite genotyping. The decision of whether or not to adopt a 
next‐generation approach thus involves a careful weighing of the 
costs and benefits. In addition, not all parentage analysis soft‐
ware can accommodate the huge numbers of markers typically 
produced in a next‐generation genotyping study, so the decision 
to use these approaches also narrows the scope of possible par‐
entage techniques to some degree.

3  | APPROACHES TO PARENTAGE 
ANALYSIS

Parentage analysis using SNPs and next-generation sequencing 
relies on the same theoretical underpinnings as parentage studies 
based on traditional markers, which are still much more popu‐
lar than SNP or next-generation methods. While, at the time of 
this writing, we found 58 studies that have employed SNPs for 
parentage analysis in the last decade (Tables 1‒3), dozens of par‐
entage studies based on microsatellite markers are published an‐
nually, and microsatellites remain the most popular marker for all 
types of kinship and relatedness studies (e.g., Städele & Vigilant, 
2016). Even the less popular classes of markers, such as ampli‐
fied fragment length polymorphisms (AFLPs) and allozymes, have 
been used in more studies of parentage than SNPs. This large 
number of published studies produces a long list of best practices 
and potential pitfalls, many of which also apply to next‐genera‐
tion approaches.

3.1 | Methods of analysis

Theory regarding parentage analysis has not changed substantially in 
the last decade, and next‐generation markers, which are essentially 
more of the same (but much more in some cases) as far as Mendelian 

markers are concerned, are not game‐changers with respect to 
the analytical techniques needed for successful parentage analy‐
sis. Thus, reviews of parentage analysis from the last two decades 
(Jones & Ardren, 2003; Jones et al., 2010) effectively summarize the 
underlying logic of the workhorses of the discipline: exclusion, par‐
entage assignment, parental reconstruction and Bayesian parentage 
analysis. Here, we summarize each approach briefly and discuss con‐
siderations for the current generation of markers and study designs. 
More detailed descriptions of each approach are given in Supporting 
Information Appendix S1.

3.2 | Exclusion

The most intuitive approach to parentage analysis is to identify in‐
compatibilities between a pair of individuals in a way that conclu‐
sively demonstrates that one could not be the parent of the other. 
Given Mendel's laws, we know that each diploid offspring receives 
exactly one allele per locus from its mother and exactly one from 
its father. Thus, if a putative offspring shares no alleles at even one 
locus with a putative parent, then the putative parent can be ex‐
cluded from the pool of potential parents (Chakraborty, Shaw, & 
Schull, 1974). This exercise assumes that no mutations or scoring 
errors occurred during meiosis or the genotyping technique, an as‐
sumption whose validity varies depending on the type of locus under 
consideration.

While exclusion is conceptually appealing and easy to implement, 
it should be used with caution and its use should dwindle, hopefully 
to zero, over time. While mutations are relatively rare, even at most 
hypervariable microsatellite loci (Ellegren, 2000; Jones, Rosenqvist, 
Berglund, & Avise, 1999), scoring errors are the real downfall for 
strict exclusion approaches. As studies grow in size, in terms of both 
numbers of samples and numbers of markers, an error‐free data set 
is virtually an impossibility. Consequently, most modern implemen‐
tations of exclusion allow an arbitrary number of mismatches. While 

Reference Organism

Number of 
microsatel‐
lites

Next‐gen 
method

Number of 
SNPs

Parentage 
analysis 
software Parentage relevance and conclusions

Premachandra, 
Nguyen, and 
Knibb (2019)

Yellowtail 
kingfish (fish)

8 DArT-seq 2,128 colony 
2.0.6.4, 
sequioa

Yellowtail kingfish were sampled from a 
communal rearing tank, and parentage was 
estimated using SNPs and microsatellite 
markers. By altering the subsets of markers 
used, the authors investigated the influence of 
number of SNPs and minor allele frequency on 
parentage assignment. They recommend using 
about 500 SNPs with moderate minor allele 
frequencies.

Thrasher et al. 
(2018)

Variegated 
fairy‐wren 
(bird)

12 ddRAD-seq 411 cervus 3.0.7 After stringently filtering the ddRAD-seq data 
set to 411 marker loci, these SNPs show greater 
power than 12 microsatellites. The SNPs slightly 
outperform the microsatellites in a study of 
extra‐pair paternity.

Note. All of these studies used the Illumina sequencing platform during the next‐generation sequencing step.

TA B L E  3   (Continued)
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this approach seems logical and prevents complete exclusion of all 
candidate parents, including the true ones, it suffers from being ar‐
bitrary and ignoring the relevant literature regarding likelihoods and 
posterior probabilities of parentage.

An odd pattern in the literature is that some fields have te‐
naciously clung to the idea that exclusion approaches are the ap‐
propriate solution to parentage analysis. This pattern is especially 
evident among breeders of domestic cattle and sheep (Table 1). 
Not coincidentally, the cattle breeding field has arrived at a pre‐
liminary consensus that 500 or more SNPs are required to resolve 
parentage confidently (e.g., McClure et al., 2015; McClure et al., 
2018), whereas fields using modern analytical methods tend to 
conclude that 100–200 SNPs are usually more than adequate 
(Abadía-Cardoso, Anderson, Pearse, & Garza, 2013; Dussault & 
Boulding, 2018; Steele et al., 2013). The reason that exclusion per‐
forms less well than formal maximum‐likelihood approaches is that 
it requires implicit assumptions that are ill defined and it discards 
much of the data. For instance, by choosing an arbitrary thresh‐
old of mismatches to constitute a true exclusion, researchers are 
implicitly imparting a level of confidence in the reliability of the 
markers. Although the probability of a given number of Mendelian 
incompatibilities can be estimated from genotyping error rates 
(Chakraborty & Schull, 1976), this extra step is rarely taken by 
users. Therefore, the number of allowable mismatches arises from 
a vague feeling of confidence not estimated from genetic data. 
Furthermore, the exclusion approach for biallelic SNPs only uses 
data from homozygous loci at which a putative parent and off‐
spring have different homozygous genotypes. Loci that are het‐
erozygous in parents or offspring also carry information regarding 
the likelihood of parentage (Kalinowski et al., 2007; Marshall et al., 
1998; Meagher & Thompson, 1986), but this information is being 
discarded in an exclusion analysis. In general, the use of exclusion 
for parentage analysis should be phased out, particularly for par‐
entage analysis using SNPs or next-generation data.

3.3 | Parentage assignment

The most commonly used approach to parentage analysis is assign‐
ment. Historically, parentage assignment could be divided into two 
categories: fractional and categorical allocations (Jones & Ardren, 
2003; Jones et al., 2010). Fractional allocation assigns partial off‐
spring to parents as a function of posterior probabilities (Devlin et 
al., 1988; Nielsen et al., 2001) and has now evolved into an approach 
known as “Bayesian parentage analysis,” which we discuss in a sepa‐
rate section below. Categorical allocation, on the other hand, assigns 
each offspring entirely to the parent with the highest likelihood and 
treats the parentage analysis separately from subsequent estimates 
of population‐level variables of interest.

Parentage assignment rests upon the calculation and compari‐
son of the relative likelihoods of different hypotheses regarding the 
relationships among putative parent–offspring dyads or mother–fa‐
ther–offspring triads. The likelihood refers to the probability of ob‐
serving the data given the hypothesis. In this case, the data are the 

genotypes, and the hypothesis is the proposed relationship among 
individuals. The likelihood can then be calculated easily by using 
the rules of Mendelian inheritance (see Marshall et al., 1998; Jones 
& Ardren, 2003; Kalinowski et al., 2007). While absolute likelihoods 
are seldom of interest, they can be used to compare alternative 
hypotheses by constructing a likelihood ratio of one hypothesis 
versus a second (often null) hypothesis. In parentage assignment, 
the ratio involves the hypothesis that the dyad or triad represents 
a true set of parents and offspring versus the hypothesis that the 
individuals are unrelated. Usually, we deal with the logarithms of 
likelihoods, and the likelihood ratio becomes a LOD score (Marshall 
et al., 1998; Meagher, 1986). A positive LOD score indicates the 
parental hypothesis is more likely, whereas a negative LOD score 
indicates the unrelated hypothesis is more likely, given the genetic 
data. These LOD scores, while useful in obtaining a maximum-like‐
lihood solution, cannot be interpreted at face value in a statistical 
sense. A major breakthrough in parentage assignment occurred 
when Marshall et al. (1998) recognized that critical values for LOD 
scores could be determined by simulation. The approach used by 
Marshall et al. (1998) actually uses Δ (delta), the difference in LOD 
score between the most likely and second most likely parent (or the 
raw LOD score if only one candidate has a positive value), and sim‐
ulates populations of parents and offspring to determine a critical 
value of Δ that results in a desired level of confidence in parentage 
assignment. This approach, which is still widely used 20 years after 
its introduction, was the first to control experiment‐wise error in 
parentage analysis.

3.4 | Bayesian parentage analysis

Bayesian parentage analysis originated as a technique to fraction‐
ally allocate offspring to parents as a function of posterior prob‐
abilities (Devlin et al., 1988). That is, the putative parent with the 
highest posterior probability would be assigned the largest frac‐
tion of the offspring, but the offspring would also be partially 
allocated to any parent with a nonzero probability of parentage. 
This fractional approach was intuitively unappealing in the early 
days of parentage because it must be strictly false from a biologi‐
cal standpoint, as fractional parentage has no biological analog. 
An adult cannot be 4% the parent of an offspring, for instance, 
even though this outcome is possible in fractional assignment. This 
intuitive distastefulness led to widespread adoption of categorical 
assignment, even though fractional assignment has better statisti‐
cal properties for the estimation of many values of interest (Neff, 
Repka, & Gross, 2001; Nielsen et al., 2001). With key develop‐
ments in the mid‐2000s, the technique of fractional allocation has 
matured into full‐fledged Bayesian parentage analysis, also called 
full‐probability parentage analysis (Hadfield, Richardson, & Burke, 
2006; Jones et al., 2010).

The advantage of Bayesian parentage analysis is that vari‐
ous quantities of interest can be estimated simultaneously along 
with patterns of parentage. Some of these quantities could be 
variables whose values matter for the assignment of parentage, 
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such as the proportion of candidate parents sampled (Nielsen et 
al., 2001). Other quantities could be population variables of in‐
terest, such as variance in mating success or the rate at which 
parentage decreases as a function of distance between prospec‐
tive mates (Hadfield et al., 2006). The advantage to this approach 
for estimating variables is that any uncertainty in the parentage 
analysis is included as uncertainty in the ultimate estimates. In 
the case of categorical assignment, uncertainty in parentage is 
normally discarded at the next phase of analysis, as assignments 
are treated as the truth during the estimation of population‐level 
parameters.

Another advantage to Bayesian parentage analysis is that prior 
information can be readily incorporated by modifying the priors. 
Thus, sources of information that imply even subtle differences in the 
probability of parentage for certain individuals can be incorporated 
naturally into the analysis. In categorical allocation, such information 
can be included, but in a very blunt fashion by either including or 
removing individuals from the list of candidate parents. Clearly, the 
Bayesian approach is more flexible and more statistically defensible. 
The biggest downside for Bayesian parentage analysis is that each 
analysis requires careful crafting of the posterior probability equa‐
tion, and the analysis may be extremely sensitive to the decisions 
made during this step.

3.5 | Parental and sibship reconstruction

Knowledge of the nature of Mendelian inheritance naturally leads 
to the conclusion that the full multilocus genotype of one parent 

can be reconstructed if the genotypes of the other parent and 
many offspring are known (Jones & Avise, 1997b). Given that a 
full reconstruction requires many offspring from a family, coupled 
with a priori knowledge that these offspring are either full‐ or half‐
siblings, this technique is generally useful only in species in which 
broods of reasonably large size can be collected together. If such 
a progeny array is available, then the full set of possible parents 
for the progeny array can be enumerated using a combinatorial or 
maximum‐likelihood algorithm (Jones, 2001, 2005; Wang, 2004). 
In general, maximum‐likelihood approaches are preferable, as ex‐
haustive combinatorial algorithms are prohibitively slow for more 
than a handful of loci and require an error‐free data set of hyper‐
variable loci.

Sibship reconstruction possesses many similarities to parental 
reconstruction, and some sibship reconstruction algorithms can be 
used to perform a very similar analysis (Wang, 2004). Sibship recon‐
struction has the advantage that it requires no a priori knowledge 
of relationships among individuals in the genotyped sample. For a 
sample containing putative full‐siblings and half‐siblings, sibship 
reconstruction approaches use a clustering algorithm to arrange 
the genotyped individuals into families (Almudevar, 2003; Smith, 
Herbinger, & Merry, 2001; Thomas & Hill, 2000). This review is 
concerned with parentage analysis, so we restrict our attention to 
sibship reconstruction methods that also allow the user to identify 
putative parents in the sample of genotyped individuals (Huisman, 
2017; Jones & Wang, 2010; Wang, 2004). Thus, many additional sib‐
ship reconstruction programs exist, beyond the ones we mention in 
the present review.

F I G U R E  1   A decision tree with cost estimates for various SNP genotyping methods based on availability of existing resources. The 
prices assume a study with 192 offspring and a parental pool of 192 adults (i.e., 384 total individuals genotyped). Prices do not include DNA 
extraction, consumable plasticware or reagents used for DNA quantification. Microsatellite prices were developed assuming the use of 6 
microsatellites, following the protocol described in Jones and Avise (1997a). PCR-SNP costs were based on Broccanello et al. (2018), and 
SNP-chip costs were based on the Bovine SNP50 DNA Analysis Bead Chip (Illumina). RAD-seq costs were updated from Peterson, Weber, 
Kay, Fisher, and Hoekstra (2012) for Illumina HiSeq pricing. Targeted capture costs were based on Hoffberg et al. (2016). Note that prices 
may vary dramatically depending on availability of core facilities and contract pricing. Asterisks (*) denote costs assuming the appropriate 
specialized machines are already available. The full breakdown of the cost estimates is available as Supporting Information File S1 [Colour 
figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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All approaches to sibship reconstruction use similar conceptual 
ideas for their algorithms. The methods use a maximum‐likelihood 
approach to evaluate and compare among proposed pedigrees, an 
approach that would, in principle, always yield the best solution given 
the underlying assumptions. However, the constellation of potential 
pedigrees is so large that an exhaustive search of all pedigrees is un‐
feasible in most cases. Consequently, the algorithms use an optimi‐
zation procedure to restrict the search to a subset of pedigree space. 
Most of the algorithms use something akin to simulated annealing 
(Almudevar, 2003; Kirkpatrick, Gelatt, & Vecchi, 1983). For the lat‐
est developments in sibship and pedigree reconstruction (including 
distant relatives), outside the realm of parentage analysis per se, we 
direct the reader to recent work by Staples, Qiao, Cho, and Silverman 
(2014), Staples, Witherspoon, Jorde, and Nickerson (2016) and Ko 
and Nielsen (2017).

4  | METHODS OF SNP GENOT YPING

Given the existing approaches and the history of parentage anal‐
ysis, we now consider how this research endeavour should evolve 
with the advent of next‐generation genotyping approaches. 
The decision of whether or not to embrace next‐generation ap‐
proaches boils down to whether or not the current project calls 
for the use of next‐generation markers in place of the micros‐
atellite markers that dominated the field of molecular ecology 
throughout the 1990s and 2000s. Many considerations come into 
play at the inception of a study regarding the choice of molecular 
markers. For instance, cost, ease of use and the goals of a study 
should all be weighed before embarking on a research path that 
represents a significant investment of time and energy by the 
investigator.

The great advantage to next‐generation markers is that they are 
extremely numerous, but their abundance comes with the cost that 
each individual marker, normally assayed as a SNP, harbours very 
little genetic variation. Thus, each individual SNP accomplishes very 
little but their collective strength can resolve almost any problem 
in parentage or kinship analysis. Next-generation SNP genotyping 
involves several categories of approaches, each of which has its own 
set of strengths and weaknesses.

4.1 | Genotyping‐by‐sequencing

One set of approaches to next-generation genotyping can be cat‐
egorized as genotyping‐by‐sequencing methods. These methods in‐
clude restriction-site-associated DNA sequencing (RAD-seq; Baird et 
al., 2008), multiplexed shotgun genotyping (MSG; Andolfatto et al., 
2011), exome sequencing (Ng et al., 2009) and related approaches 
where the genotypes are determined by short‐read sequencing of a 
vast library of DNA fragments. The advantage of these approaches 
is that they produce genotypes at an extremely large number of loci, 
often numbering in the tens of thousands. However, this huge geno‐
typing throughput carries a number of disadvantages. For instance, 

the reliability of genotypes depends on sequencing coverage, and 
even with relatively high sequencing depth, allelic dropout is guaran‐
teed to occur at a substantial fraction of loci (due to simple rules of 
binomial sampling). Unfortunately, allelic dropout may be the worst 
type of sequencing error for parentage analysis because it is likely 
to result in apparent Mendelian incompatibilities between parents 
and offspring (Chakraborty, Li, & Zhong, 1994; Pemberton, Slate, 
Bancroft, & Barrett, 1995; Wang, 2010). Other disadvantages in‐
clude that library preparation requires substantial molecular skills, 
analysing the data requires some degree of bioinformatics expertise 
(although pipelines have recently been developed to aid in the anal‐
ysis of RAD-seq data in parentage; Andrews et al., 2018; Thrasher, 
Butcher, Campagna, Webster, & Lovette, 2018), the cost per indi‐
vidual is high (Figure 1), and most of the methods include sources of 
bias that are not yet well understood. Thus far, only a few parentage 
studies have used genotyping‐by‐sequencing data directly to assign 
parentage (Table 3).

4.2 | Targeted capture

Targeted capture approaches use primers, oligos or other probes 
developed from genotyping‐by‐sequencing, whole genomic, or tran‐
scriptomic data to sample a chosen subset of the genome using high‐
throughput sequencing technologies such as Illumina HiSeq (e.g., 
GT-Seq, Campbell, Harmon, & Narum, 2015; radcap, Hoffberg et al., 
2016; rapture, Ali et al., 2016). In an attempt to reduce error rates, 
these methods minimize the number of PCR cycles used. Targeted 
capture approaches can produce hundreds or thousands of markers, 
allowing researchers to increase read depth per locus. Careful choice 
of markers can minimize the sources of bias and error inherent to 
genotyping‐by‐sequencing and maximize the quality of the gener‐
ated genotypes. We view these methods as promising approaches 
for parentage analysis in the next‐generation sequencing era, al‐
though they have yet to be widely applied in a parentage context.

4.3 | SNP‐PCR approaches

Many SNP-based parentage approaches have opted to use some 
version of high-throughput genotyping of SNPs by designing PCR 
primers and amplifying specific regions containing SNPs (Tables 1 
and 2). Many such approaches are commercially available, and they 
typically involve a highly multiplexed set of PCR primers, permit‐
ting dozens of SNPs to be amplified simultaneously. In the modern 
manifestations of these approaches, the genotypes from PCR prod‐
ucts are usually obtained through MALDI-TOF mass spectrometry 
(iPLEX/MassARRAY) or real-time PCR (Fluidigm), although other ap‐
proaches are also possible (e.g., capillary electrophoreses: SNPlex). 
The only initial barrier to the SNP-PCR approach is the identification 
of genomic sequences containing SNPs. Thus, SNP-PCR is best used 
in a system in which some population genomic information is already 
available or can be generated. Studies have used data from RAD-seq 
and RNA-seq to identify loci suitable for SNP-PCR (Holman, Garcia 
de la Serrana, Onoufriou, Hillestad, & Johnson, 2017; Kaiser et al., 
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2017; Table 2), indicating that a relatively minor investment in next‐
generation sequencing can be enough to identify a suite of loci suita‐
ble for parentage analysis. Once the SNP-PCR loci are characterized, 
their assay generally requires specialized equipment, which can often 
be accessed through core facilities or commercial genotyping com‐
panies. In comparison with genotyping‐by‐sequencing approaches, 
SNP-PCR produces more reliable genotypes but involves orders of 
magnitudes fewer loci. This method also has the advantage that it is 
perhaps the least expensive method to genotype large numbers of 
individuals at a large enough number of loci to completely resolve 
parentage in most systems (Figure 1).

4.4 | The SNP‐chip or SNP array

An alternative to SNP-PCR is the SNP-Chip or SNP array, which is a 
microarray that can be used to determine genotypes at a large num‐
ber of SNPs, often tens of thousands, simultaneously. Spots on the 
SNP-Chip correspond to different alleles, and genotypes are deter‐
mined by hybridizing labelled genomic DNA to the array. Because 
the development of a SNP-Chip requires detailed knowledge of the 
genome and is expensive, SNP-Chips are generally available only for 
heavily studied model organisms, such as humans, pigs, cattle and 
so forth. The advantages to SNP-Chips are that they can be assayed 
easily and produce a large number of reliable genotypes at a much 
smaller cost than genotyping‐by‐sequencing. The disadvantages are 
that the cost per individual is high compared to SNP-PCR (Figure 1) 
and that the investment in initial development is prohibitively large 
for all but the most heavily studied of organisms.

5  | CHOOSING A MARKER SYSTEM

Given the proliferation of next‐generation approaches, the choice 
of a marker system for parentage analysis may seem difficult. Gone 
are the days where we can casually recommend microsatellites as 
the resolution to all problems (Glaubitz et al., 2003; Jones & Ardren, 
2003; Jones et al., 2010). However, the classic markers should not be 
summarily discarded either as the field moves forward.

The choice of a marker system depends upon the parentage 
question, the natural history of the study system and the state of 
genomic resources for the target organism, because these factors 
determine the cost of the project and the resolution provided by the 
chosen marker system. Microsatellite markers may be a viable choice 
if they are already available and they have the power to provide the 
desired level of resolution. If microsatellite markers have not been 
characterized, however, a SNP-PCR or targeted capture approach 
will generally be easier and more cost effective (Figure 1). The major 
limitation of any approach based on SNPs is that each marker is usu‐
ally biallelic, a feature that limits its flexibility, especially in species 
where putative parents are difficult to sample. Moreover, if only 
low-quality DNA is available, SNPs generated by next-generation se‐
quencing methods may be less reliable than microsatellites (Andrews 
et al., 2018) or traditional SNPs (Carroll et al., 2018). Nevertheless, TA
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for most parentage analysis problems, in which the sample includes 
a number of offspring and a pool of candidate parents, SNPs are en‐
tirely appropriate. Empirical work thus far indicates that a suite of 
100 to 200 SNPs will generally provide resolving power exceeding 
that of a typical panel of microsatellite markers (Table 1). However, 
choosing the most informative SNPs is imperative whether pursu‐
ing a SNP-PCR, SNP-chip or targeted capture method. To maximize 
power, the minor allele frequency of SNPs should be high and the 
likelihood of allelic dropout should be low. If developing SNPs from 
a genotype‐by‐sequencing data set, the program gbstools (Cooke et 
al., 2016) can identify loci that have a likely low allelic dropout rate. 
Choosing informative SNPs will provide higher power for parentage 
analysis and maximize cost efficiency.

The choice of markers becomes more difficult when offspring can 
be collected in groups that are known to contain half‐ or full‐siblings. 
This situation may be common when eggs are laid in egg masses (e.g., 
Liebgold, Cabe, Jaeger, & Leberg, 2006; Croshaw, Peters, & Glenn, 
2009) or one parent cares for a large group of related offspring (e.g., 
Mobley, Amundsen, Forsgren, Svensson, & Jones, 2009; Paczolt, 
Martin, Ratterman, & Jones, 2016). In this scenario, the knowledge 
that progeny occur in family groups can provide additional power for 
parentage analysis. For instance, an approach that can reconstruct 

parental genotypes can be quite powerful, in some cases completely 
resolving parentage with only three or four hypervariable microsat‐
ellites (e.g., Jones et al., 1999, Jones, Arguello, & Arnold, 2002). As 
per‐locus allelic diversity drops, many more loci become necessary 
for successful parentage reconstruction and a maximum‐likelihood 
approach is required. For tightly linked SNPs, however, allelic diver‐
sity can be recovered by reconstructing haplotypes, as exemplified 
by a recent study of gilthead sea bream (Table 1; García‐Fernández, 
Sánchez, & Blanco, 2018). Another viable approach when the sample 
includes groups of full‐ or half‐siblings is to use a technique that re‐
constructs sibships, while also assigning parentage, as implemented 
in the programs colony (Jones & Wang, 2010; Wang, 2004) or sequioa 
(Huisman, 2017). These techniques appear to work equally well with 
all types of markers, so for most systems, SNPs will be the marker 
of choice, unless hypervariable microsatellites have already been 
developed.

The considerations above lead to some simple rules of thumb, 
given the current state of genotyping technology. For a new system, 
with no developed markers, the best approach is usually going to be 
to develop a set of SNP-PCR or targeted capture markers (Figure 1). 
A single RNA-seq or RAD-seq analysis of a handful of individuals 
should be enough to permit the identification of promising SNP loci 

TA B L E  5   Niche software packages

Name of software
Parentage analysis 
technique Description Reference

accurassign Assignment Assigns parent‐pairs using maximum‐likelihood‐based 
approach similar to CERVUS.

Boichard et al. (2014)

famoz Assignment A likelihood‐based parentage assignment program that can 
use codominant, dominant and cytoplasmic markers. FAMOZ 
also does not require a priori information on the proportion 
of sampled candidate parents.

Gerber et al. (2003)

faps Sibship Given half‐sibling progeny arrays with known mothers, 
sibships and paternities are determined through a hierarchi‐
cal clustering approach.

Ellis et al. (2018)

franz Sibship Can make use of prior information, such as sub‐pedigrees, sex 
and age.

Riester, Stadler, and 
Klemm (2009)

gerud2.0 Parental Reconstruction Reconstructs parental genotypes when no parents are known. Jones (2005)

grandparent finder Grandparent Identification Match offspring with missing parents in the sample to 
grandparents using exclusion.

Christie et al. (2011)

orchard Exclusion/Assignment Combines exclusion and likelihood‐based parentage assign‐
ment for autotetraploids.

Spielmann et al. (2015)

parfex Assignment Implements exclusion and likelihood‐based parentage 
assignment in Microsoft Excel.

Sekino and Kakehi (2012)

polypatex Exclusion Applies exclusion methods to polyploids with 4n, 6n or 8n 
duplication.

Zwart et al. (2016)

solomon Bayesian Designed for situations where only a small fraction of all 
candidate parents can be sampled. In such cases, SOLOMON 
uses Bayes’ theorem to determine the probability of 
parent–offspring pairs being false given the frequencies of 
shared alleles. See also Anderson and Ng (2014).

Christie, Tennessen, and 
Blouin (2013)

vitassign Exclusion Allows for mismatches at one or more allele to recover 
assignment power.

Vandeputte, Mauger, and 
Dupont-Nivet (2006)
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(e.g., Andrews et al., 2018; Thrasher et al., 2018). In the case of an 
organism for which microsatellite markers are available, the power 
of the markers can be assessed by calculating exclusion probabil‐
ities (Chakraborty, Meagher, & Smouse, 1988) or simulating data 
in a program like cervus (Marshall et al., 1998), colony (Jones & 
Wang, 2010; Wang, 2012, 2013) or gerud (Jones, 2001, 2005). If 
the markers are sufficiently polymorphic to answer the question 
of interest, then the existing microsatellites will be a good choice. 
Other approaches, such as RAD-seq, exome sequencing, RNA-
seq, whole-genome sequencing and even SNP-Chips, will usually 
be too expensive on a per‐individual basis to justify their use for 
most parentage applications (Figure 1). However, this constraint is 
quickly changing, as evidenced by the recent papers summarized 
in Table 3. Nevertheless, these techniques typically produce gen‐
otypes at thousands or tens of thousands of SNPs, when only a 
few hundred SNPs are usually required for complete resolution of 
parentage (Tables 1‒3). In addition, the types of errors typically en‐
countered by microsatellites and traditional SNPs are already well 
accommodated by existing software packages, whereas the errors 
associated with genotyping‐by‐sequencing, especially PCR dupli‐
cations and allelic dropouts, have yet to be integrated into most 
software packages. We expect this situation to change dramatically 
in the next few years, however, and these developments will make 
genotyping‐by‐sequencing methods more appealing for parentage 
analysis.

6  | CHOOSING SOF T WARE

The last few years have witnessed a proliferation of new software 
packages for parentage analysis. Here, we focus on older software 
packages that have become the workhorses of parentage analysis, 
as well as newer promising programs, some of which may still need 
further testing. Many of the older, less popular software packages 
are still available, and the interested reader can track them down 
by consulting previous reviews (Jones & Ardren, 2003; Jones et 
al., 2010). Here, we organize software packages by analysis ap‐
proach. These programs are summarized in Table 4, and a bit more 
detail about each package is provided in Supporting Information 
Appendix S2.

Some important issues when choosing software for parentage 
analysis for next‐generation markers, beyond whether they can 
analyse the type of parentage data collected (e.g., parent–offspring 
pairs, groups of putative siblings and putative parents, or parent–
parent–offspring triads), are (a) whether the program can handle the 
number of markers used in the study and (b) whether the method 
can accept genotype likelihoods that reflect the genotype uncer‐
tainties characteristic of next‐generation sequencing or whether 
additional consideration of errors will be required. All of the meth‐
ods worth mentioning incorporate error rates, but most of those 
error rates are based on expectations for microsatellites and will 
likely not properly incorporate error arising from sequencing errors, 
allelic dropout and PCR bias, all of which can dramatically impact 

genotypes in next-generation sequencing data sets such as RAD-seq 
data (Flanagan & Jones, 2017b).

6.1 | Parentage assignment software

The granddaddy of parentage assignment software packages is cer-
vus (Kalinowski et al., 2007; Marshall et al., 1998), which was the 
first mainstream program and remains by far the most popular, even 
for SNPs (Tables 1 and 2) and next-generation data (Table 3). This 
program was groundbreaking in that it introduced a simulation ap‐
proach, based on log‐likelihoods, to control experiment‐wise error. 
One advantage to cervus for most users is that it is user‐friendly, 
with an intuitive graphical user interface. However, this apparent 
advantage is a drawback for some users, as it cannot be incorpo‐
rated easily into command‐line bioinformatics pipelines. The latest 
version also seamlessly incorporates next-generation SNP data. 
The most recent next‐generation alternative to CERVUS is called 
SNPPIT (Anderson, 2010, 2012). This program only allows the anal‐
ysis of data for pairs of parents and their offspring. SNPPIT also only 
analyses biallelic SNP genotypes, a design decision that significantly 
improves the speed of the analysis and allows a larger number of 
SNPs to be used.

6.2 | Sibship reconstruction and 
parentage assignment

Probably the second most popular parentage analysis program is 
colony, which was the first program to combine sibship reconstruc‐
tion and parentage assignment in a single analytical framework 
(Jones & Wang, 2010; Wang, 2004; Wang & Santure, 2009). On 
Windows operating systems, colony has an intuitive graphical user 
interface, which likely adds to its popularity. A more recent com‐
petitor program is the R package sequioa (Huisman, 2017), which 
has the advantage of running in R, a platform that supports many 
other analyses of next‐generation data sets. sequoia is optimized 
to run very quickly, relative to previous‐generation parentage ap‐
proaches. This optimization is achieved partially through an initial 
filtering step, based on loci where the individuals in question show 
alternatively homozygous genotypes, which removes putative link‐
ages between individuals that are unlikely to be relatives. sequioa 
also differs from colony in considering a wider range of possible 
relationships, making grandparent–grandoffspring assignments 
possible, for instance. sequioa performs well with a large number of 
independent SNPs; for data sets with less than about 200 SNPs, 
colony, with its more exhaustive search of pedigree space, performs 
better (Huisman, 2017).

6.3 | Bayesian parentage analysis

Bayesian parentage analysis, also known as full‐probability par‐
entage analysis, was first implemented in masterbayes (Hadfield 
et al., 2006), the R package that still provides the only reasona‐
ble framework for the implementation of this analysis technique. 
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masterbayes can be used to perform a parentage analysis per se, 
based on posterior probabilities (Nielsen et al., 2001), or to im‐
plement a full‐probability parentage analysis that simultaneously 
estimates population‐level parameters during the parentage 
analysis. Of course, the Bayesian framework used by masterbayes 
also allows the incorporation of any prior information that sheds 
light on parentage patterns. For instance, Walling, Pemberton, 
Hadfield, and Kruuk (2010) show that parentage analysis in red 
deer can be improved by using masterbayes to include phenotypic 
data. masterbayes has also been used, in a full‐probability frame‐
work, to estimate a number of interesting ecological param‐
eters, such as the fecundities of dispersing banner‐tail kangaroo 
rats (Waser, Nichols, & Hadfield, 2013) and the relationships 
between mating order, sperm package size and siring success 
in bush crickets (Parker, Zaborowska, Ritchie, & Vahed, 2017). 
Other full-probability models, similar to those implemented in 
masterbayes, have been developed independently using the tools 
available in r, for example, to estimate distances of seed and 
pollen movement in the red oak (Moran & Clark, 2011; see also 
Robledo, 2012 and Chybicki, 2017 for non‐R implementations). 
Despite a number of successes of the Bayesian parentage ap‐
proach, full‐probability models remain underutilized in the study 
of parentage.

6.4 | Niche programs

A number of niche programs with potential utility for various 
specific parentage scenarios are listed in Table 5. Some of these 
programs deal with specific issues that apply to certain types 
of biological systems or data sets. For example, famoz (Gerber, 
Chabrier, & Kremer, 2003) provides a cervus‐like analysis frame‐
work that also works with dominant markers, such as amplified 
fragment length polymorphisms (AFLPs). Another program, or-
chard (Spielmann, Harris, Boshier, & Vinson, 2015), tackles the 
thorny problem of parentage analysis in autotetraploids. Other 
niche programs implement similar algorithms to mainstream pro‐
grams, but with modifications that increase computational speed 
or improve them in other ways. For instance, accurassign (Boichard 
et al., 2014) uses a cervus‐like algorithm, restricted to sire–dam–
offspring trios, which is optimized to run more quickly than a full 
cervus analysis. Similarly, faps (Ellis, Field, & Barton, 2018) im‐
proves upon the speed of colony by implementing a hierarchical 
clustering approach, at the expense of being less general, as faps 
requires arrays of half‐siblings whose mothers are known. Finally, 
some of the niche programs perform functions that are unique. 
For instance, gerud2.0 (Jones, 2005) exhaustively searches for the 
genotypes of the minimum number of parents necessary to explain 
a progeny array, but requires a small number of highly polymorphic 
markers. grandparent finder (Christie, Marine, & Blouin, 2011) skips 
the parentage analysis step altogether and matches offspring to 
grandparents through an exclusion‐based approach. See Table 5 
for additional programs of interest beyond those mentioned here.

6.5 | Other methods of note

The most widely used techniques for parentage analysis rely upon 
the Mendelian likelihoods derived by Meagher and Thompson 
(1986) and extended by Marshall et al. (1998), but these ap‐
proaches assume unlinked markers and require knowledge of de‐
tails like the proportion of parents sampled and genotyping error 
rates. As data sets get larger, some of these assumptions will be 
hard to meet, and researchers are beginning to explore other 
methods with less exacting requirements. For instance, Grashei, 
Ødegård, and Meuwissen (2018) develop a method based on the 
genomic relationship likelihood, which uses metrics based on pair‐
wise relatedness estimates among individuals that are insensitive 
to linkage disequilibrium (VanRaden, 2008). Their method outper‐
forms COLONY when applied to data sets consisting of very large 
numbers of marker loci (approx. 54,000 SNPs). Other recently 
developed approaches include constrained genomic regression 
(Boerner, 2017) and counting of the number of opposing homozy‐
gote loci (Hayes, 2011; Wiggans et al., 2009). Before any of these 
new approaches can be considered mainstream alternatives to the 
tried‐and‐true approaches discussed above, they will have to be 
subjected to additional rigorous testing.

7  | AVOIDING PARENTAGE ANALYSIS 
PITFALL S

A number of additional questions should be considered to avoid 
critical issues during parentage analysis. Linkage disequilibrium 
is moving to the forefront as a major issue as data sets grow to a 
genomic scale. The calculation of the likelihoods underlying parent‐
age assignment is greatly simplified by the assumption that loci are 
in linkage equilibrium (Thompson & Meagher, 1998), and virtually all 
mainstream techniques embrace this simplification (but see the pre‐
vious section). For now, the most common solution to this problem 
is to filter loci so that only a subset of statistically independent loci 
remains. For example, Andrews et al. (2018) illustrate one possible 
approach in their pipeline for RAD-seq data by using the program 
plink (Purcell et al., 2007) to filter out tightly linked loci.

Historically, one of the most troubling issues in parentage 
analysis was the occurrence of null (i.e., nonamplifying) alleles 
at microsatellite loci (Callen et al., 1993; Dakin & Avise, 2004; 
Jones, Stockwell, Walker, & Avise, 1998), and this problem per‐
sists in next‐generation approaches as allelic dropout (Andrews, 
Good, Miller, Luikart, & Hohenlohe, 2016). Null alleles and allelic 
dropout can lead to false exclusions, and the models of error in 
most assignment programs are not designed to accommodate this 
source of error. Rather, the advice is to remove loci suffering from 
null alleles or allelic dropout from the analysis, a solution that is 
relatively easy to apply to small microsatellite or SNP data sets 
but perhaps difficult to apply to the extremely large data sets 
produced by genotyping‐by‐sequencing approaches. In addition, 



560  |     FLANAGAN ANd JONES

the rate of allelic dropout may vary based on the type of next‐
generation method used (Flanagan & Jones, 2017b). Possible ap‐
proaches are to use a program like gbstools to estimate which 
SNPs in the data set are most likely suffering from allelic drop‐
out (Cooke et al., 2016) or to strictly filter loci for adherence to 
Hardy–Weinberg equilibrium. The effects of allelic dropout still 
need to be investigated in more detail, particularly in situations 
in which some parents are missing from the sample, as many par‐
entage programs have the potential to assign incorrect parents 
with surprisingly high confidence when the true parents have not 
been genotyped.

Parentage assignment requires some level of understanding of 
the population from which the samples originated, usually including 
estimates of allele frequencies and at least a rough idea of the pro‐
portion of candidate parents sampled (see Supporting Information 
Appendix S2). Allele frequencies can be calculated from the sample 
of potential parents, but it is often advisable to have a separate sam‐
ple of individuals from the population. In addition, the progeny usu‐
ally should not be included in allele frequency estimates, because 
the existence of groups of close relatives can lead to bias and spuri‐
ous departures from Hardy–Weinberg equilibrium. Most parentage 
assignment methods also assume that marker loci are neutral, but 
as these loci come to represent a greater fraction of the genome, 
some may be targets of selection (Flanagan & Jones, 2017a), pos‐
sibly affecting the outcome of parentage analysis. In terms of the 
proportion of parents sampled, ignoring this parameter has a direct 
influence on the confidence of assignments (Nielsen et al., 2001). 
Thus, the study should be designed to deliver population‐level allele 
frequencies as well as an estimate of the proportion of candidate 
parents sampled.

Another challenge facing parentage assignment using any type 
of marker is the accidental inclusion of family members other than 
the parents in the pool of candidate parents. Most parentage as‐
signment programs assume that the parents are unrelated to each 
other and that no relatives of the offspring other than parents are 
included in the sample of adults. However, generations often over‐
lap, resulting in half‐ or full‐siblings of some of the progeny being 
included in the putative parent pool. This situation can cause prob‐
lems, because full‐sibs can have higher assignment likelihoods than 
the true parent (Marshall et al., 1998; Thompson, 1976a, 1976b; 
Thompson & Meagher, 1987). Sometimes related males will be clus‐
tered together, leading to set of related putative fathers, which will 
also bias the results of parentage assignment (Double, Cockburn, 
Barry, & Smouse, 1997). If many relatives are likely to be present 
in the sample, one solution might be to use an approach that esti‐
mates a broader pedigree than just parent–offspring relationships. 
Programs such as sequoia (Huisman, 2017) and a growing list of ped‐
igree reconstruction programs (Ko & Nielsen, 2017) can be used 
to perform these sorts of analyses. As genomic resources become 
available for more species, it may even be possible to infer pedigrees 
using the length and distribution of genome segments that are iden‐
tical by descent (Hill & White, 2013), but this sort of approach still 
requires some development.

Polyploids pose additional challenges, and consequently, fewer 
approaches exist for assigning parentage in polyploids. The primary 
challenge facing parentage in polyploids is allele dosage. Allele dosage 
occurs when an individual has multiple copies of the same allele—for 
example, if an individual is genotyped with a, b and c alleles, it could 
have the genotypes aabc, abbc or abcc—and its exact genotype can 
only be diagnosed if it is homozygous for one allele or heterozygous 
for all four alleles. Some researchers have ignored the problem of al‐
lele dosage by (a) treating alleles as loci and transforming codominant 
microsatellite data into a binary data set that can be treated like AFLPs 
(e.g., Gerber et al., 2003; Rodzen, Famula, & May, 2004) or (b) un‐
certain alleles are recorded as missing data (Riday et al., 2013). The 
program orchard (Spielmann et al., 2015) implements a method that 
tests all possible genotypes in tetraploids, thereby incorporating allele 
dosage. orchard uses a combination of exclusion and likelihood to as‐
sign parentage. While orchard is limited to tetrapolyploids, polypatex 
accommodates autopolyploids with 4n, 6n or 8n duplications (Zwart, 
Elliott, Hopley, Lovell, & Young, 2016). However, unlike orchard, 
polypatex conducts only exclusion‐based parentage analysis, which 
is the least desirable of the parentage analysis approaches. In short, 
much work remains to be done with respect to parentage assignment 
in polyploids.

8  | CONCLUSIONS AND 
RECOMMENDATIONS

Parentage analysis continues to play an important role in molecular 
ecology, and recent technological advances have made generating 
data used in parentage analysis even more accessible. We encour‐
age researchers to carefully consider their questions and budgets 
before they embrace next‐generation genotyping approaches. 
Although SNPs may now be the best marker type for parentage 
analysis, the number required is far below what is typically included 
in genotyping‐by‐sequencing approaches. Additionally, error aris‐
ing from allelic dropout can be especially problematic in parent‐
age analysis, and more development of analytical techniques will 
be required to accommodate these types of errors. Many of these 
problems can be circumvented with SNP-PCR approaches, but 
these methods require some up‐front development, in the same 
vein as microsatellite markers. Regardless of how SNPs are gener‐
ated, researchers should ensure that they carefully select markers 
that will adhere to the assumptions of parentage analysis programs 
and should preferentially choose loci with high minor allele fre‐
quencies. Researchers will have to weigh the relative strengths 
and weaknesses of next‐generation approaches against traditional 
molecular markers, such as microsatellites, which have repeatedly 
proven their worth.

In terms of analytical approach, parentage assignment and sib‐
ship reconstruction are the leading methods. Both methods per‐
form well with a wide range of markers, and existing mainstream 
software packages can use next‐generation data. Some can even 
combine data from microsatellites and SNPs into a single analysis. 
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Bayesian methods are also a viable alternative, and they are partic‐
ularly appropriate when prior information, such as age or location, 
can be included in the analysis. They also permit a full‐probability 
parentage analysis, which simultaneously estimates patterns of 
parentage and population‐level parameters of interest. This latter 
method is the most defensible from a statistical standpoint, but it 
also requires careful consideration in the construction of proba‐
bility equations. For certain sampling schemes that allow groups 
of related offspring to be collected together, parental reconstruc‐
tion remains a viable technique and often substantially reduces 
the number of markers required. The one method that should 
be phased out is strict exclusion. Since an error‐free data set is a 
near impossibility, especially as the number of markers increases, 
exclusion requires arbitrary decisions regarding the number of 
mismatches required for a true exclusion. This number cannot be 
determined from first principles, and exclusion is divorced from 
statistical theory. Consequently, exclusion‐based approaches 
make poor use of the data and also provide no method to assess 
confidence of assignments.

The final consideration, which we did not discuss extensively 
throughout this review, is the sampling design of the study. The suc‐
cess of parentage analysis depends strongly on the nature of samples 
that can be obtained from the system of interest. Thus, a major con‐
sideration is whether or not the organism can be sampled in a way 
that allows parents to be present in the data set. Now that abundant 
genetic markers can be obtained more easily than at any other time in 
the history of molecular ecology, the sampling plan is perhaps the sin‐
gle most important factor in parentage analysis. Thus, a substantial in‐
vestment of time and effort in the planning and execution of fieldwork 
will certainly pay dividends in the study of parentage. Regardless, the 
future of parentage analysis is bright, and next‐generation sequenc‐
ing promises to deliver answers in systems that were difficult to study 
with traditional markers. With careful thought and experimental de‐
sign, parentage analysis can now be conducted with sufficient power 
to completely resolve virtually any question in this area of inquiry.
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