Analysis of gene expression

From genome to transcriptome

Transcriptome is dynamic and different in every tissue!

Transcriptome is a set of active (= expressed) genes at the moment of sampling.

Transcriptome is <u>variable</u> between tissues, during developmental stages or as a response to different conditions (stress, disease, weather...).

Mouse: tissues: age: conditions:

mouse liver transcriptome:

is different from

mouse kidney transcriptome:

is different from mouse eye transcriptome:

embryonic transcriptome:

is different from

transcriptome of healthy mouse:

is different from

Transcriptome = RNA – response to a need for a protein...

RNA vs. DNA single strand vs. double strand

RNA vs. DNA

DNA – double helix

RNA – single helix => secondary structure!

Many types of RNA:

- rRNA = ribosomal RNA (80-90% of RNA) ribosomes, translation
- tRNA = transfer RNA (up to 15% of RNA) translation, carries amino acids
- mRNA = messenger RNA (cca 1-3% of RNA) coding proteins!!!
- miRNA = micro RNA (21-24 nucl.) regulation
- siRNA = small interfering RNA gene silencing

Small non-coding RNA (26 - 31 nucl.):

- snRNA = small nuclear RNA- maturation of rRNA, tRNA, splicing
- snoRNA = small nucleolar RNA (type of snRNA) splicing, maturation of rRNA
- scaRNA = small Cajal body RNA (type of snRNA) maturation of rRNA
- piRNA = piwi-interacting RNA post-transcriptional gene silencing of retrotransposons lncRNA = long non-coding RNA (>200 nt.) epigenetic regulation of transcription; Xist
- exRNA = extracellular RNA (any of the mRNA, tRNA, miRNA, siRNA, lncRN)
- SRP-RNA = signal recognition particle RNA transport of proteins
- ... + many other (unknown) types...

...it's way more complex and still not completely understood...

Proteosynthesis apparatus

Most of the RNA in the cell (80%) is composed of rRNA: in eukaryotes 5S rRNA, 28S rRNA (large ribosome subunit), 18S rRNA (small ribosome subunit)

Total RNA

<u>Transcriptome sequencing = RNA-seq</u>

- rRNA = ribosomal RNA (80-90% of RNA) ribosomes, translation
- tRNA = transfer RNA (up to 15% of RNA) translation, carries amino acids
- mRNA = messenger RNA (cca 1-3% of RNA) coding proteins!!!

Every mRNA product has a poly-A tail (added during polyadenylation).

Challenge: how to get just mRNA?

Challenge: how to get just mRNA?

Poly-A selection vs. rRNA depletion

RNA-seq and gene expression studies

example of the functional question:

- energy saved in white fat

- energy consumed from <u>brown</u> fat

- <u>white</u> fat turns into the <u>brown</u> fat in need...

- genes for the white-to-brown-fat transformation - activated in cold

- sequence all mRNA from warm and cold treatment mice...

COMPARE THEM -> find the genes with different expression (diff. amount of mRNA)

candidate genes for this specific function...

e.g. neuregulin 4

Nowadays mostly Illumina platform:

all mRNA sequenced!!!

- -everything
- -no need for primers (cool for non-model species)
- -quantification
- -no need for control genes, tissues etc...
- -provides candidates

NGS (many millions of short reads)

- some genes are highly expressed, some are rather rare transcripts
- Illumina HiSeq provides a **dynamic range of 5 orders of magnitude** => able to detect rare transcripts in ratio of 1:100'000! (with the linear relation)
- Minimum amount of required reads is 10'000'000 per sample (=> i.e. many millions of reads are an advantage)
- Need for at least 3 replicates (= samples from the same condition)
- Software for differential expression analysis: DESeq package in R
 - -everything
 - -no need for primers (cool for non-model species)
 - -quantification
 - -no need for control genes, tissues etc...
 - -provides candidates

•

How to calculate gene expression:

RKPM, FKPM, TPM...

- 1) Count all reads in the sample => divide it by 1'000'000 that's scaling factor
- 2) Count reads of your gene / divided by scaling factor => read per million (RPM)
- 3) Normalize by length of gene in kbp => reads per kilobase per million (RPKM)
 - for the single-end RNA-seq (where 1 read = 1 fragment)
- 5) For paired-end reads 2 reads = 1 fragment => **fragments per kilobase per million** (FPKM)
- 6) Alternative: TPM = transcripts per million
 - same method but different order: first normalize your gene reads per kilobase (RPK)
 - then sum the RPK and divide by 1'000'000 = this is a scaling factor now
 - divide you RPK by the scaling factor => TPM

RNA-seq and expression studies

Expression profiles are comparative, i.e. there is always a relative comparison

Plot of gene expression:

e.g. mouse in cold

RNA-seq and expression studies

Expression profiles are comparative, i.e. there is always a relative comparison

Real data:

Transcriptome diversity:

- 14'033 genes found = expressed in all 4 species
- 2'776 genes found only in stingray
- 179 genes found only in coelacanth
- etc...

De Oliveira et al., 2016, Scientific Reports

Other gene expression methods:

traditional method – quantitative real time PCR

"normal" PCR (from genome)

runs 35 cycles – in the end a lot of product –> can be used for sequencing or so...

"real time" PCR (from RNA - cDNA)

runs 35 cycles – every cycle measures content!! –> product after run is useless...

★ = fluorescent color binding to DNA

difficulties: only one gene per tube; primers for each gene and/or each species... => can test candidates, but not search for them..

Example of real-time PCR results

Cycles

Reference gene = usually some house-keeping gene not reacting to the treatment...

Target Gene A in control cells

Target Gene A in drug treated cells

Any changes?

Reference Gene B in control cells

Ref Gene B in drug treated cells

→ ∆Ct1 = Ct (Target A -treated) – Ct (Ref B-treated)

→ ∆Ct2 = Ct (Target A-control) – Ct (Ref B-control)

 \rightarrow $\triangle \triangle Ct = \triangle Ct1$ (treated) – $\triangle Ct2$ (control)

ΔΔCt = delta-delta Ct

= "difference od difference" between two samples and two genes

Example:

Normalized target gene expression level = $2^{\triangle \triangle Ct}$

gene A expression in treated cells is higher than in control and reference gene is having double expression, then: Ct(geneA-treated) = 11 (3 cycles earlies = eight times higher expression than control)

Ct(geneA-control) = 14

Ct(geneB-ref-treated) = 22.5

Ct(geneB-ref-control) = 23.5

$$\Delta Ct1 = 22.5 - 11 = 11.5$$

$$\Delta$$
Ct2 = 23.5 – 14 = 9.5

$$\Delta \Delta Ct = 11.5 - 9.5 = 2$$

- \Rightarrow Normalized expression = $2^2 = 4$
- ⇒ treatment causes <u>4 fold</u> increase of expression

How to present real-time PCR results

Olfactory receptors in rat (newborns vs. adults) same data, two ways of visualization:

Rimbault et al., 2009, BMC Genomics

cichlid opsin genes: five "families"

light spectrum

cones

shallow-water species of Barombi Mbo cichlids:

expression:

they can see colours!

cichlid opsin genes: five "families"

light spectrum

deep-water species of Barombi Mbo cichlids:

expression:

they are missing the red channel...

Fluorescent in-situ hybridization

= FISH

Retina of vertebrates (except for mammals) is known to be composed of double and single cones... How about photoreceptors?

Retina labeled by two RNA probes (= different photoreceptors)

Each probe – different fluorescent color (photoreceptor 1 – green, photoreceptor 2 – red

Expression of different photoreceptors is spatially separated – i.e. each cell expresses only 1 type of photoreceptors!!

Other gene expression methods:

Microarrays

- 1) <u>Probe</u> = oligonucleotides covalently bound to the chip
- 2) <u>Samples</u> (cDNA) labeled with fluorescent dye

3) Sample on the chip: hybridizes with the probe

4) Fluorescent signal detected

One channel microarray

- dye Cy3 (green color) - just intensity

Two channel microarray

- two different dyes Cy3 (green), Cy5 (red)
- comparative control / disease
- equal concentration

Other gene expression methods:

Microarrays

DNA chip, biochip

DNA hybridization

Aplications also in SNP detection, etc...

Sample – red label, control green label

Only for model species with known genomes...

From genome to transcriptome

Epigenetic regulation

<u>epigenetics</u> = the study of heritable changes in gene activity that are <u>not</u> caused by changes in the DNA sequence.

Methylation of genome:

figure 1: Transcriptional silencing of gene promoters via DNA methylation

How to sequence methylation on NG sequencers:

