How to read and make phylogenetic trees, part 2 + Use of molecular phylogetics in zoology

Zuzana Starostová, Department of Zoology,
Faculty of Science, Charles University

How to make phylogenetic trees? Workflow:

v) obtain DNA sequence
quality check
sequence alignment

- calculating genetic distances
- phylogeny estimation - topology and branch length
- NJ, PM, ML, BA
- reliability test (bootstrap)
- tree visualization

Alignment

AATGCC-CTAAA AATGCGGCTAAA AACGCG-CTAAA -ATG---CTAA-

Phylogeny estimation

character based (maximum parsimony, maximum likelihood, Bayesian analysis)
two types of methods
distance based (Neighbour-joining, UPGMA)

Two different approaches: algorithm - number of specific steps resulting in one best tree methods: UPGMA, Neighbour-joining
optimality criterion - consider and compare all theoretically possible trees based on selected criteria (number of evolutionary steps, likelihood value) and select the best one

distances

 input is a matrix of distances between species| $\begin{aligned} & \text { ᄃ్ర } \\ & \text { థ } \end{aligned}$ | | I | II | III | IV |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | I | --- | 0.1 | 0.4 | 0.6 |
| | II | | --- | 0.5 | 0.5 |
| | III | | | --- | 0.6 |
| | IV | | | | --- |

proportional (p) distance

number of substitutions between sequences
$\mathrm{p}=$ total number of base differences/total no. of available sites

$$
\begin{array}{ll}
p=n_{d} / n & \begin{array}{l}
\text { GATCATTAATGCGATAT } \\
\text { GACCGTTATTGCCATAT }
\end{array} \\
p=4 / 17=0.23 &
\end{array}
$$

real number of substitutions in the sequence over time is usually higher than observed p distance

we can see just 3 differences (p), but in fact there was 12 substitutions
ACTGAACGTAACGC $\quad \mathrm{p}=3$

true evolutionary distance=12

ACTGAACGTAACGC

sequence

 of taxon Ain phylogenetic analyses we use "correction" of observed distances to estimate number of hidden changes (multiple mutations etc.)
correction based on different substitution type (Ts, Tv), different

Examples:

Jukes-Cantor model (distance)

all substitution types and base frequencies are presumed equal
JC distance

$$
d_{J C}=-\frac{3}{4} \ln \left(1-\frac{4}{3} p\right)
$$

Kimura 2-parameter model (K2P):

 transitions are more likely than transversions, equal base frequenciesK2P distance
$\mathrm{P}=\mathrm{n}_{\mathrm{TS}} / \mathrm{n}$
$\mathrm{Q}=\mathrm{n}_{\mathrm{TV}} / \mathrm{n}$

$$
d_{K 2 P}=0.5 \ln \left(\frac{1}{1-2 P-Q} \frac{1}{j}+0.25 \ln \left(\frac{1}{1-2 Q}\right) \frac{1}{j}\right.
$$

Table 2. Uncorrected p-distances within the genus Cyclura.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	C. collei	-																			
2	C. rileyi group	0.075	-																		
3	C. cychlura cychlura	0.084	0.036	-																	
4	C. cychlura figginsi I	0.083	0.035	0.006	-																
5	C. cychlura figginsi 2	0.085	0.035	0.008	0.004	-															
6	C. cychlura inornata	0.084	0.034	0.004	0.001	0.003	-														
7	C. lewisi 1	0.077	0.035	0.028	0.029	0.029	0.028	-													
8	C. lewisi 2	0.082	0.035	0.028	0.029	0.029	0.028	0.004	-												
9	C. nubila caymanensis I	0.091	0.039	0.027	0.028	0.029	0.027	0.028	0.028	-											
10	C. nubila caymanensis 2	0.087	0.036	0.023	0.025	0.026	0.023	0.025	0.025	0.006	-										
11	C. nubila nubila 1	0.091	0.036	0.026	0.027	0.028	0.026	0.027	0.027	0.010	0.007	-									
12	C. nubila nubila 2	0.089	0.035	0.025	0.026	0.027	0.025	0.026	0.026	0.009	0.006	0.001	-								
13	C. nubila nubila 3	0.093	0.041	0.028	0.031	0.032	0.030	0.030	0.030	0.010	0.016	0.018	0.017	-							
14	Pepino	0.085	0.032	0.026	0.027	0.027	0.026	0.018	0.018	0.027	0.023	0.026	0.025	0.029	-						
15	Prague 75	0.086	0.032	0.022	0.023	0.025	0.022	0.023	0.023	0.009	0.003	0.006	0.004	0.015	0.022	-					
16	Prague 76	0.087	0.034	0.023	0.025	0.026	0.023	0.025	0.025	0.010	0.004	0.007	0.006	0.016	0.023	0.001	-				
17	Marea cwl	0.088	0.035	0.022	0.023	0.025	0.022	0.026	0.026	0.011	0.006	0.008	0.007	0.017	0.025	0.002	0.003	-			
18	Prague 5	0.082	0.037	0.030	0.031	0.031	0.030	0.007	0.004	0.030	0.027	0.029	0.028	0.032	0.020	0.026	0.027	0.028	-		
19	Holguin G0H	0.086	0.030	0.020	0.019	0.020	0.018	0.021	0.021	0.009	0.006	0.008	0.007	0.012	0.020	0.004	0.006	0.007	0.023	-	
20	Tonik	0.081	0.036	0.029	0.030	0.030	0.029	0.006	0.003	0.029	0.026	0.028	0.027	0.031	0.019	0.025	0.026	0.027	0.001	0.022	-

methods

Neighbour-joining (NJ) - the fully resolved tree is "decomposed" from a fully unresolved "star" tree by successively inserting branches between a pair of closest neighbors and the
remaining terminals in the tree result is one tree

- other methods: UPGMA
(Unweighted Pair Group Method using Arithmetic means), Minimal evolution

conclusion, pros and cons

distance methods rely on evolutionary models (distance corrections) to estimate the numbers of multiple/parallel... substitutions - the result is dependent on how well the accepted models match the actual evolutionary properties of the sequences
only one tree is derived
discards the primary character data
problem with interpretation of branch lengths
very fast, ideal for the first insight

Maximum parsimony:

optimality criterion - parsimony score = minimum number of events (steps) required by a tree to explain the variation in the data
search for topologies that minimize the total tree length assuming a minimum number of base changes "Occam's Razor" - "keep it simple"

Using Maximum Parsimony to Choose Between Two Possible Trees

Site

Maximum parsimony:

optimality criterion - parsimony score = minimum number of events (steps) required by a tree to explain the variation in the data
search for topologies that minimize the total tree length assuming a minimum number of base changes
"Occam's Razor" - "keep it simple"
$(\mathbf{2 n}-\mathbf{3})!\quad$ We already know that there are a lot of possible trees- in most cases we can not compare all of them
$2^{n-2}(n-2)!$

no. of taxa	no. of unrooted trees	no. of rooted trees
4	3	15
8	10395	135135
10	2027025	34459425
22	3×10^{23}	
50	3×10^{74}	
100	2×10^{182}	

no. of trees exponentially increases

Tree searching

Exhaustive Searching

Branch and Bound Searching

Heuristic Searching

Local branch swapping Swofford et al. (1996)

Maximum parsimony

in most cases we can not compare all trees
\Rightarrow e.g. heuristic search

- create random tree
- calculate parsimony score
- rearranging of the tree,
- calculate parsimony score
- further the method works with the better (shorter) tree
- repeated rearranging and calculating scores
- at the end shortest tree

Sometimes (quite often) we find more equal trees

Consensus tree:

when multiple phylogenies are supported - a consensus tree shows only those relationships common to all trees (based on our settings)

- strict consensus (only relationships common to all trees)
- majority-rule consensus (relationships common to more than 50% of trees are shown)

Tree 1

Tree 2

Tree 3

Strict
consensus tree

Parsimony: pros and cons

works directly with characters
straightforward, well understood principle
relatively fast
does not need a model of evolution (but not really model free change is rare)
performs weakly on distantly related data long branch attraction can produce many trees with the same parsimony score

long branch attraction (LBA)

A

B

c

D

FIGURE 5.22. Long-branch attraction is a methodological artifact that can cause phylogenetic trees to inaccurately portray evolutionary history. The phenomenon causes errors in phylogenetic reconstruction when two (or more) of the entities being studied lie on the end of long branches in their "real" tree but are not sister taxa. (A) In this hypothetical "real" tree of five species, species 2 and 3 (which are not sister taxa, as indicated) have undergone higher rates of evolution than the other three, and thus sit at the end of longer branches. Many phylogenetic reconstruction methods used to infer the evolution of species will cause the long branches to appear to be closely related and thus produce an incorrect tree (as shown in B). (C) In studies of the evolution of microsporidia (a relative of fungi, left tree), long-branch attraction (LBA) is believed to have erroneously identified them as deeply branching eukaryotes (right tree). (The evolution of microsporidia is discussed in more detail on p. 198.) (D) In trees of anciently duplicated genes, long-branch attraction might have pulled bacteria down to the paralogs used to root the tree, because the paralogs are at the end of a long branch (right tree). This would occur if bacteria evolved at a higher rate than archaea and eukaryotes (as suggested in the left tree).
5.22C,D, redrawn from Forterre P. et al., Bioessays 21: 871-879, © 1999 Wiley-Liss, Inc.

Maximum likelihood - ML

- method compares possible phylogenetic trees on the basis of their ability to predict the observed data. The tree that has the highest probability of producing the observed sequences is preferred.
- maximum likelihood reconstructs ancestors at all nodes of each considered tree, but it also assigns branch lengths based on the probabilities of mutations. For each possible tree topology, the assumed substitution rates are varied to find the parameters that give the highest likelihood of producing the observed sequences.

Likelihood describes how well the model predicts the data

- it prefers higher likelihood above the lower one

ML results in only 1 tree with branch lengths

Maximum likelihood - ML

- ML uses model of sequence evolution (substitution model)
- several programs (Modeltest, jModeltest, MrAIC...) programs examine the goodness of fit of the model to the data
- models differ in:
- base frequencies
- probability of nucleotides changes (transition x transversion)
- heterogeneousness in different parts of sequence or in different position

Model examples: Jukes-Cantor (JC),
Kimura 2-parametres model (K2P), General time-reversible model (GTR)

Models of sequence evolution

- models are nested, one is a special case of the other

Best model selection

program jModeltest (Modeltest)

Example of model:
Lset base $=(0.31710 .29480 .1271) ~ n s t=6 ~ r m a t=(0.17105 .83911 .00000 .171014 .3282)$
rates=gamma shape=0.3310 ncat=4 pinvar=0.4550;
1.
3.

Lset base=(0.3171 0.2948 0.1271) hst=6 mat=(0.1710 5.8391 1.0000 0.1710 14.3282) rates=gamma shape $=0.3319$ ncat=4 pinvar=0.4550;
4.
5.
6.
7.

1. - relative base composition (4th is 1 -(fr1st+fr2nd+fr3rd))
2. - No. of substitution types ($1=$ same probability for all bases, $6=$ every substitution has different probability)
3. - substitution rate matrix - rate of changes of each type of bases in alignment
4. - probability of changes distribution in individual positions (equal = equal for all position, gamma = with different
gama distribution, invgamma)
5. - shape of gamma distribution
6. - gamma distribution category
7. - ratio (proportion) of invariable sites

Maximum likelihood

pros

- a lot of possible models of sequence evolution, robust to deviations from the model

cons

- computationally demanding, slow (nowadays not so big problem)

ML method can decrease effect of LBA

[^0]
reliability tests

-nonparametric resampling methods - bootstrapping, jackknifing
\longrightarrow new data sets are created from the original data set by sampling columns of characters at random

- each site can be sampled again with the same probability as any of the other sites

Box 3
Bootstrap Analysis (Felsenstein, 1985)

sample 3 (s3)
A $\begin{array}{ll}\text { B } & \text {. GGGUUUUCAA. . } \\ \text { AGGUUUUGAA. . }\end{array}$

. . UUUCCCCGAA. .

sample $\mathrm{n}(\mathbf{1 0 0 < n < 2 0 0 0)}$

Bootstrap values:
< 50\% - no - just by chance ; > 75\% ok; 95-100\% great

Bayesian inference/analysis

Bayesian inference of phylogeny uses a likelihood function to create a quantity called the posterior probability of trees using a model of evolution (substitution model), based on some prior probabilities (priors), producing the most likely phylogenetic tree for the given data

Based on theorem of Thomas Bayes (18. century) - Bayesian theorem

- describes the probability of an event, based on prior knowledge of conditions that might be related to the event

$\operatorname{Pr}(\mathrm{H} \mid \mathrm{D})=\frac{\text { Likelihood }}{\operatorname{Pr}(\mathrm{D} \mid \mathrm{H}) \times \operatorname{Pr}(\mathrm{H})}$	
Posterior probability	$\operatorname{Pr}(\mathrm{D})$
Probability of data	

[^1][^2]

We will illustrate Bayesian inference using a simple example involving dice. Consider a box with 100 dice, 90 of which are fair and 10 of which are biased. The probability of observing some number of pips after rolling a fair or biased die is given in the following table:

Observation	Fair	Biased
-	$\frac{1}{6}$	$\frac{1}{21}$
\bullet.	$\frac{1}{6}$	$\frac{2}{21}$
$\stackrel{\circ}{\circ}$	$\frac{1}{6}$	$\frac{3}{21}$
$: 0$	$\frac{1}{6}$	$\frac{4}{21}$
0	1	5
\%	$\overline{6}$	21
:	$\frac{1}{6}$	$\frac{6}{21}$

The probability of a high roll is larger for the biased dice than for the fair dice. Suppose that you draw a die at random from the box and roll it twice, observing a four on the first roll and a six on the second roll. What is the probability that the die is biased?

A Bayesian analysis combines ones prior beliefs about the probability of a hypothesis with the likelihood. The likelihood is the vehicle that carries the information about the hypothesis contained in the observations. In this case, the likelihood is simply the probability of observing a four and a six given that the die is biased or fair. Assuming independence of the tosses, the probability of ohserving a four and a six is

$$
\operatorname{Pr}[\text { [思 } \mathbf{I t} \mid \text { Fair }]=\frac{1}{6} \times \frac{1}{6}=\frac{1}{36}
$$

for a fair die and

$$
\operatorname{Pr}[\text { : } \mathbf{E} . \mathbf{I}] \text { Biased }]=\frac{4}{21} \times \frac{6}{21}=\frac{24}{441}
$$

for a biased die. The probability of observing the data is 1.96 times greater under the hypothesis that the die is biased. In other words, the ratio of the likelihoods under the two hypotheses suggests that the die is biased.

Bayesian inferences are based upon the posterior probability of a bypothesis. The posterior probability that the die is biased can be obtained using Bayes' (I) formula:
where $\operatorname{Pr}[$ Biased $]$ and $\operatorname{Pr}[$ Fair] are the prior probabilities that the die is biased or fair, respectively. As we set up the problem, a reasonable prior probability that the die is biased would be the proportion of the dice in the box that were biased. The posterior probability is then

$$
\operatorname{Pr}[\text { Biased } \mid: \mathbf{R}, \mathbf{H}]=\frac{\frac{24}{441} \times \frac{1}{10}}{\frac{24}{441} \times \frac{1}{10}+\frac{1}{36} \times \frac{9}{10}}=0.179
$$

This means that our opinion that the die is biased changed from 0.1 to 0.179 after observing the four and six.

Bayesian inference of phylogeny uses a likelihood function to create a quantity called the posterior probability of trees using a model of evolution (substitution model), based on some prior probabilities (priors), producing the most likely phylogenetic tree for the given data

Likelihood $\operatorname{Pr}(\mathrm{H} \mid \mathrm{D})=\frac{\operatorname{Pr}(\mathrm{D} \mid \mathrm{H}) \times \operatorname{Pr}(\mathrm{H})}{}$ Posterior probability $\operatorname{Pr}(\mathrm{D})$ Probability of data

$\operatorname{Pr}(\mathrm{D})$ is not possible to calculate as this is the $\Sigma_{\mathrm{H}} \operatorname{Pr}(\mathrm{D} \mid \mathrm{H}) \times \operatorname{Pr}(\mathrm{H})$. Too many different hypothesis.

- the hypothesis H is a combination of topology of branches, branch length and parameter of the substitution model
- we may approximate the posterior distribution for H using Marcov Chain Monte Carlo (MCMC) methods

Bayesian analysis

Bayesian analysis step-by-step:

- 4 chains
- 3D space (area) with all possible trees
- find (built) first tree, compute likelihood (L)
- second tree, compute L
- if L is better, jump to the second tree, if not, stay with the first one
global maximum

Two types of chains:

Cold - conservative one, can jump only upwards, if finds better L value Warm - three chains - can jump also downwards + jump accidentaly + call cold one if find better topology global maximum

higher likelihood
global maximum

global maximum

- If there are enough generations (i.e. search steps) cold chain finds the highes global L

MrBayes run

- Output of MrBayes is file with all trees found by cold chain during the procedure Usually every 100th tree from milions generation is saved - Usually we have two runs

No. generations
Trees at the beginning of run are not OK - we have to cut them (burnin)

Posterior probabilty

BPP (PP) is parameter of Bayesian analysis - instead of bootstraps

- BPP: represent the probability that the corresponding clade is true conditional on the model, the priors, and the data
- below $0.95-0.9$ topology is considered unreliable

Table 2|A summary of strengths and weaknesses of different tree reconstruction methods

Strengths

Weaknesses

Parsimony methods

- Simplicity and intuitive appeal
- The only framework appropriate for some data (such as SINES and LINES)
- Assumptions are implicit and poorly understood
- Lack of a model makes it nearly impossible to incorporate our knowledge of sequence evolution
- Branch lengths are substantially underestimated when substitution rates are high
- Maximum parsimony may suffer from long-branch attraction

Distance methods

- Fast computational speed
- Can be applied to any type of data as long as a genetic distance can be defined
- Models for distance calculation can be chosen to fit data
- Most distance methods, such as neighbour joining, do not consider variances of distance estimates
- Distance calculation is problematic when sequences are divergent and involve many alignment gaps
- Negative branch lengths are not meaningful

Likelihood methods

- Can use complex substitution models to approach biological reality
- Powerful framework for estimating parameters and testing hypotheses
- Maximum likelihood iteration involves heavy computation
- The topology is not a parameter so that it is difficult to apply maximum likelihood theory for its estimation. Bootstrap proportions are hard to interpret

Bayesian methods

- Can use realistic substitution models, as in	- Markov chain Monte Carlo (MCMC) involves heavy computation
maximum likelihood	- In large data sets, MCMC convergence and mixing problems can
- Prior probability allows the incorporation of	be hard to identify or rectify
information or expert knowledge	- Uninformative prior probabilities may be difficult to specify.
- Posterior probabilities for trees and clades have	Multidimensional priors may have undue influence on the
easy interpretations	posterior without the investigator's knowledge

Tree visualization:

Tree visualization:

- Newick format

(A,(B,(C,(D,E))))

(IguigNA1_:0.00221,(Iguig:0.01733,(((Cpinguis:0.05228,((()Cstej1:0.00012, Cstej2:0.00098):0.00354,Ccor:0.00543):0.03863,((Cric1:0.00184, Cric2:0.00184):0.01853,(Cyccar2:0.00636,Cyccar1:0.00498):0.01702):0.03298):0.01722, (Ccollei:0.04462,(Crileyi:0.01300,((Clew1:0.00221,Clew2:0.00221):0.00885, (((Ccay1:0.00442,Ccay2:0.00111):0.00111,(Cnubnub1:0.00111,Cnubnub2:0.00000):0.00332):0.0 0885,((Cinor:0.00000,Cfig1:0.00111,Cfig2:0.00332):0.00221,(Ccychc2:0.00000, Ccychc:0.00000):0.00221):0.01051):0.00442):0.01023):0.02222):0.01447):0.02213):0.06215, Igu deli:0.05379):0.02871,IguigSA1_:0.02231):0.01069):0.02471,IguigCA1_:0.00553);

Different programs for tree visualization: TreeView, FigTree, Dendroscope

Take -Home Message!

- there are more methods how to calculate tree
- a phylogenetic tree is a hypothesis
- we have to test the reliability
- obtaining a good alignment is one of the most crucial steps towards a good phylogenetic tree

Software: MP: PAUP*, TNT, Phylip, MEGA, ... ML: PAUP*, PHYML, GARLI, RAxML, Phylip, MEGA,... BA: MrBayes
NJ: PAUP*, Phylip, MEGA, ...

Table 1 | Functionalities of a few commonly used phylogenetic programs

Name	Brief description	Link	Refs
Bayesian evolutionary analysis sampling trees (BEAST)	A Bayesian MCMC program for inferring rooted trees under the clock or relaxed-clock models. It can be used to analyse nucleotide and amino acid sequences, as well as morphological data. A suite of programs, such as Tracer and FigTree, are also provided to diagnose, summarize and visualize results	http://beast.bio.ed,ac.uk	135
Genetic algorithm for rapid likelihood inference (GARLI)	A program that uses genetic algorithms to search for maximum likelihood trees. It includes the GTR + I model and special cases and can analyse nucleotide, amino acid and codon sequences. A parallel version is also available	http://code.google.com/p/ garli	55
Hypothesis testing using phylogenies (HYPHY)	A maximum likelihood program for fitting models of molecular evolution. It implements a high-level language that the user can use to specify models and to set up likelihood ratio tests	http://www.hyphy.org	136
Molecular evolutionary genetic analysis (MEGA)	A Windows-based program with a full graphical user interface that can be run under Mac OSX or Linux using Windows emulators. It includes distance, parsimony and likelihood methods of phylogeny reconstruction, although its strength lies in the distance methods. It incorporates the alignment program ClustalW and can retrieve data from GenBank	http://www.megasoftware.net	37
MrBayes	A Bayesian MCMC program for phylogenetic inference. It includes all of the models of nucleotide, amino acid and codon substitution developed for likelihood analysis	http://mrbayes.net	71
Phylogenetic analysis by maximum likelihood (PAML)	A collection of programs for estimating parameters and testing hypotheses using likelihood. It is mostly used for tests of positive selection, ancestral reconstruction and molecular clock dating. It is not appropriate for tree searches	http://abacus-gene.ucl.ac.uk/ software	137
Phylogenetic analysis using parsimony* and other methods (PAUP* 4.0)	PAUP* 4.0 is still a beta version (at the time of writing). It implements parsimony, distance and likelihood methods of phylogeny reconstruction	http://www.sinauer.com/ detail.php?id $=8060$	
PHYLIP	A package of programs for phylogenetic inference by distance, parsimony and likelihood methods	http://evolution. gs.washington.edu/phylip.html	
PhyML	A fast program for searching for the maximum likelihood trees using nucleotide or protein sequence data	http://www.atgc-montpellier fr/phyml/binaries.php	53
RAxML	A fast program for searching for the maximum likelihood trees under the GTR model using nucleotide or amino acid sequences. The parallel versions are particularly powerful	http://scoh-its.org/exelixis/ software.html	54
Tree analysis using new technology (TNT)	A fast parsimony program intended for very large data sets	http://wwow.zmuc.dk/public/ phylogeny/TNT	42

Note: all programs can run on Windows, Mac OSX and Unix or Linux platforms. Except for PAUP*, which charges a nominal fee, all packages are free for download. See Felsenstein's comprehensive list of programs at http://evolution.genetics,washington.edu/phylip/software.html, GTR, general time reversible; MCMC, Markov chain Monte Carlo.

But what to do if tree does not look „good"?

Syst. Biol. 51(4):588-598, 2002
DOI: 10.1080/10635150290102339
Increased Taxon Sampling Greatly Reduces Phylogenetic Error

Derrick J. Zwickl and David M. Hillis

- add some more genes/sequences
- add some taxa

More Genes or More Taxa? The Relative Contribution of Gene Number and Taxon Number to Phylogenetic Accuracy

Antonis Rokas and Sean B. Carroll

Rokas \& Carroll (2005) Mol. Biol. Evol.

- majority of taxa should have the most complete dataset!

But what to do if the tree does not look ,good"?

- add some taxa
- add some more genes/sequences
- change alignment parameters - the most important
- different model of sequence evolution for each gene
- model of sequence evolution can be different for all position in coding genes
\longrightarrow partitioning analysis
- do not overpartition (Partition Finder v1.1.0 - Lanfear et al. 2012)

But what to do if the tree does not look „good"?

- add some taxa
- add some more genes/sequences
- change alignment parameters - the most important (contamination, „strange" taxa)
- different model of sequence evolution for each gene
- model of sequence evolution can be different for all position in coding genes
- knowledge of secondary structure

secondary structure of the part of DNA (RNA) of 28 S rDNA

Why use of molecular phylogetics in zoology?

- phylogeny of different groups of taxa
- definition of species boundary - use in taxonomy, cryptic species detection, character mapping and comparison
- studying biodiversity
- biogeography
- conservation biology
- disease prediction (Ebola, honey-bee pathogens, resistance etc.)

Phylogeny of Eucaryota (and Procaryota)

I, Boreoeutheria II, Atlantogenata i, Euarchontoglires ii, Laurasiatheria iii, Afrotheria iv, Xenarthra

FHuman
Chimpanzee
Gorilla

- Orangutan
- Macaque
- Marmoset

Tarsier
Galago

- Mouse Lemur

Shrew

Opposum
Wallaby

- 447 orthologous genes

Phylogeny of mammals

Song et al. 2012 PNAS
slide prepared by Petr Janšta

Closest relatives to primates

Janečka et al., Science 2007

Colugos (Dermoptera) - sister group of primates,

- arboreal gliding mammals that are native to Southeast Asia - also called flying lemurs

Phylogenetic analyses based on DNA data clarified the evolutionary relationships between humans and other primates

- Darwin was the first to speculate on evolutionary relationships between humans and other primates
- in 1960 from fossils paleontologist concluded that chimps and gorillas are our closest relatives and that the split occurred 15 MYA
- different molecular data put this split as much more recent - around 5 MYA

DNA-DNA hybridization data

Humans, chimpanzees, and bonobos are more closely related to one another than either is to gorillas or any other primate.

Comparison of genomes: humans and chimpanzees shared a common ancestor $\sim 5-7$ MYA. The difference between the two genomes is $\sim 4 \%-c o m p r i s i n g ~ \sim 35$ million single nucleotide differences and $\sim 90 \mathrm{Mb}$ of insertions and deletions.

The 1.2% chimp-human distinction involves only substitutions in genes that chimpanzees and humans share.

Integrative taxonomy

- only 14-75\% of estimated planet's biodiversity is described (Mora et al. 2011, Costello, May \& Sork 2013)
- limitation of morphological x molecular taxonomy
- integrative taxonomy (at first molecules and then morphology)

Cryptic species diversity in Hemiphyllodactylus geckos

- Previously known only 8 species and some subspecies, same appearance, loss of good diagnostic characters

[^3]Integrative taxonomy uncovers high levels of cryptic species diversity in Hemiphyllodactylus Bleeker, 1860 (Squamata: Gekkonidae) and the description of a new species from Peninsular Malaysia
L. LEE GRISMER ${ }^{1,2 *}$, PERRY L. WOOD Jr^{3}, SHAHRUL ANUAR ${ }^{4}$, MOHD ABDUL MUIN ${ }^{\pi}$, EVAN S. H. QUAH ${ }^{6}$, JIMMY A. McGUIRE ${ }^{7,8}$, RAFE M. BROWN ${ }^{9,10}$, NGO VAN TRI ${ }^{11}$ and PHAM HONG THAI ${ }^{12}$
slide prepared by Petr Janšta

Divergency plot－usually 18－30\％in ND gene

Table 6．Uncorrected p－distances for the major lineages of the genus Hemiphyllodacltyus Bleeker， 1860 computed in MEGA v5．1（Tamura，2011）

	$\begin{aligned} & \text { 复 } \\ & \text { 駡 } \\ & \text { y } \\ & \text { y } \\ & \text { n } \end{aligned}$			皆	$\begin{aligned} & \text { en } \\ & \text { E } \\ & \text { N } \\ & \text { N } \end{aligned}$			娄	H. lonlingensis inserta sedis	並		$\frac{3}{2}$		范					$\begin{aligned} & 10 \\ & \frac{8}{6} \\ & \frac{6}{6} \\ & \frac{6}{6} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \text { é } \\ & \text { í } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \mathrm{t} \\ & \dot{8} \\ & \dot{8} \\ & \dot{6} \\ & \dot{y} \end{aligned}$	∞ 合 क क a		$\begin{aligned} & \text { 은 } \\ & \text { 合 } \\ & \text { 去 } \end{aligned}$
H．aurantiacus	N／A																							
H．dushanensis	0.318	0.002																						
H．ganoklonis	0.234	0.304	N／A																					
H．harterti	0.294	0.313	0.263	0.033																				
H．insularis	0.252	0.268	0.181	0.283	N／A																			
H．Jinpingensis	0.251	0.295	0.287	0.316	0.269	0.006																		
H．larutensis	0，246	0.297	0.264	0.206	0.285	0.307	N／A																	
H．longlingensis	0.255	0.259	0.275	0.301	0.265	0.186	0.290	0.009																
H．lonlingensis inserta sedis	0.272	0.263	0.288	0.300	0.274	0.184	0.288	0.181	N／A															
H．tehtarik	0.256	0.307	0.299	0.255	0.297	0.315	0.106	0.295	0.286	N／A														
H．titiwangsaensis	0.257	0.302	0.268	0.213	0.289	0.288	0.173	0.280	0.283	0.193	0.015													
H．typus	0.250	0.306	0.192	0.300	0.201	0.285	0.289	0.290	0.300	0.304	0.293	0.001												
H．yunnanensis	0.277	0.220	0.287	0.303	0.268	0.266	0.286	0.261	0.245	0.300	0.297	0.289	0.088											
H．zugi	0.306	0.064	0.291	0.300	0.269	0.289	0.301	0.261	0.258	0.308	0.290	0.303	0.217	N／A										
H ．sp．nov． 1	0.256	0.289	0.261	0.215	0.270	0.288	0.160	0.281	0.277	0.183	0.127	0.283	0.294	0.283	0.022									
H．sp．nov． 2	0.227	0.265	0.180	0.273	0.214	0.273	0.262	0.253	0.268	0.299	0.268	0.203	0.278	0.259	0.266	N／A								
H．sp．nov． 3	0.258	0.295	0.210	0.288	0.196	0.282	0.277	0.279	0.279	0.294	0.278	0.193	0.288	0.292	0.272	0.175	N／A							
H．sp．nov． 4	0.244	0.279	0.139	0.288	0.175	0.282	0.278	0.282	0.283	0.302	0.285	0.203	0.279	0.269	0.277	0.207	0.214	N／A						
H．sp．nov． 5	0.247	0.266	0.166	0.288	0.219	0.299	0.278	0.281	0.266	0.303	0.291	0.199	0.275	0.270	0.271	0.224	0.222	0.143	N／A					
H．sp．nov． 6	N／A	0.317	0.190	0.293	0.200	0.300	0.292	0.306	0.319	0.312	0.293	0.030	0.296	0.318	0.287	0.208	0.188	0.185	0.237	0				
H．sp．nov． 7	0.247	0.271	0.248	0.273	0.285	0.186	0.269	0.151	0.196	0.279	0.278	0.254	0.246	0.268	0.276	0.248	0.251	0.267	0.216	0.275	0.004			
$H^{\text {H．}}$ sp．nov． 8	0.231	0.280	0.219	0.247	0.262	0.188	0.256	0.135	0.203	0.276	0.252	0.255	0.262	0.277	0.253	0.226	0.252	0.242	0.256	0.245	0.138	N／A		
H．sp．nov． 9	0.200	0.294	0.255	0.281	0.279	0.283	0.276	0.269	0.279	0.298	0.270	0.294	0.276	0.276	0.284	0.255	0.280	0.262	0.297	0.294	0.256	0.241	N／A	
H．sp．nov． 10	0.302	0.174	0.302	0.326	0.285	0.301	0.305	0.275	0.273	0.309	0.304	0.309	0.223	0.152	0.298	0.285	0.305	0.285	0.283	0.308	0.248	0.273	0.276	N／A

Biogeography

Out of Australia and back again: the world-wide historical biogeography of non-pollinating fig wasps (Hymenoptera: Sycophaginae)
Astrid Cruaud ${ }^{1 \star}$, Roula Jabbour-Zahab ${ }^{1}$, Gwenaëlle Genson ${ }^{1}$, Arnaud

- Fossil dating (Idarnes from Dominican Amber - 30-15My; endemic taxa to Mauritius (8My) and Solomon Islands (11-12My)
- Several genes, very well resolved topology
- Ficus origin 100-60My, Ficus pollinator origin $70-15 \mathrm{My}$
- Sycophaginae origin (48-35My)

slide prepared by Petr Janšta

Out of Australia and back again!

slide prepared by Petr Janšta

[^0]: Sequence length

[^1]: $\operatorname{Pr}(\mathrm{D})$ is not possible to calculate as this is the $\Sigma_{\mathrm{H}} \operatorname{Pr}(\mathrm{D} \mid \mathrm{H}) \times \operatorname{Pr}(\mathrm{H})$. Too many different hypothesis.

[^2]: The hypothesis H is a combination of $\tau, \nu, \Pi, \mathrm{R}, \alpha$.

[^3]: Zoological Journal of the Linneun Soclety, 2013, 169, 849-880. With 9 figures

